I’m teaching myself LLM internals by re-implementing the stack from first principles. Profiling TikToken’s Python/Rust implementation showed a lot of time was spent doing regex matching. Most of my perf gains come from a) using a faster jit-compiled regex engine; and b) simplifying the algorithm to forego regex matching special tokens at all.
Benchmarking code is included. Notable results show: - 4x faster code sample tokenization on a single thread. - 2-3x higher throughput when tested on a 1GB natural language text file.
If you think Python is a bad language for AI integrations, try writing one in a compiled language.
So great there are 8 of them. 800% better than all the rest!
> If you think Python is a bad language for AI integrations, try writing one in a compiled language.
I'll take this challenge, all day, every day, so long as I and the hypothetical 'move fast and break things' have equal "must run in prod" and "must be understandable by some other human" qualifiers
What type is `array`? Don't worry your pretty head about it, feed it whatever type you want and let Sentry's TypeError sort it out <https://github.com/openai/whisper/blob/v20250625/whisper/aud...> Oh, sorry, and you wanted to know what `pad_or_trim` returns? Well that's just, like, your opinion man
I'm still teaching them Python.