←back to thread

BusyBeaver(6) Is Quite Large

(scottaaronson.blog)
271 points bdr | 1 comments | | HN request time: 0.217s | source
Show context
Scarblac ◴[] No.44406478[source]
It boggles my mind that a number (an uncomputable number, granted) like BB(748) can be "independent of ZFC". It feels like a category error or something.
replies(12): >>44406574 #>>44406590 #>>44407165 #>>44407378 #>>44407396 #>>44407448 #>>44407506 #>>44407549 #>>44408495 #>>44409048 #>>44410736 #>>44413092 #
bo1024 ◴[] No.44407549[source]
Many replies don't seem to understand Godel and independence (and one that might is heavily downvoted). Cliff notes:

* ZFC is a set of axioms. A "model" is a structure that respects the axioms.

* By Godel, we know that ZFC proves a statement if and only if the statement is true in all models of ZFC.

* Therefore, the statement "BB(748) is independent of ZFC" is the same as the statement "There are two different models of ZFC where BB(748) are two different numbers.

* We can take one of these to be the "standard model"[1] that we all think of when we picture a Turing Machine. However, the other would be a strange "non-standard" model that includes finite "natural numbers" that are not in the set {0,1,2,3,...} and it includes Turing Machines that halt in "finite" time that we would not say halt at all in the standard model.

* So BB(748) is indeed a number as far as the standard model is concerned, the problem only comes from non-standard models.

TL;DR this is more about the fact that ZFC axioms allow weird models of Turing Machines that don't match how we think Turing Machines usually work.

[1] https://en.wikipedia.org/wiki/Non-standard_model_of_arithmet...

replies(1): >>44415127 #
1. bo1024 ◴[] No.44415127[source]
I would edit my last line to say: weird models of numbers that don't match how we think "halts in finite steps" usually works.