We know from the functional busy beaver [1] that Graham behaviour can come surprisingly early; a 49-bit lambda term suffices. There are only 77519927606 closed lambda terms of at most that size [2], compared to 4^12*23836540=399910780272640 unique 6-state Turing Machines [3].
With the achievement of pentation in only 6 states, several people now believe that 7 states should suffice to surpass Graham's. I would still find that rather surprising. A few days ago, I made a large bet with one of them on whether we would see proof of BB(7)>Graham's within the next 10 years.
What do people here think?