←back to thread

BusyBeaver(6) Is Quite Large

(scottaaronson.blog)
271 points bdr | 5 comments | | HN request time: 0.441s | source
Show context
Scarblac ◴[] No.44406478[source]
It boggles my mind that a number (an uncomputable number, granted) like BB(748) can be "independent of ZFC". It feels like a category error or something.
replies(12): >>44406574 #>>44406590 #>>44407165 #>>44407378 #>>44407396 #>>44407448 #>>44407506 #>>44407549 #>>44408495 #>>44409048 #>>44410736 #>>44413092 #
ChadNauseam ◴[] No.44406574[source]
The number itself is not independent of ZFC. (Every integer can be expressed in ZFC.) What's independent of ZFC is the process of computing BB(748).
replies(3): >>44406611 #>>44407419 #>>44407440 #
Straw ◴[] No.44406611[source]
Sure, if someone just gives you the number, ZFC can represent it. But ZFC cannot prove that the value is correct, so how do you know you have the right number? Use a stronger proof system? Go a bit bigger and same issue.
replies(3): >>44406771 #>>44406894 #>>44410514 #
ajkjk ◴[] No.44406771[source]
Not an expert, but I've read about this a bit because it bothered me also and I think this is the answer:

Most of these 'uncomputable' problems are uncomputable in the sense of the halting problem: you can write down an algorithm that should compute them, but it might never halt. That's the sense in which BB(x) is uncomputable: you won't know if you're done ever, because you can't distinguish a machine that never halts from one that just hasn't halted yet (since it has an infinite number of states, you can't just wait for a loop).

So presumably the independence of a number from ZFC is like that also: you can't prove it's the value of BB(745) because you won't know if you've proved it; the only way to prove it is essentially to run those Turing machines until they stop and you'll never know if you're done.

I'm guessing that for the very small Turing machines there is not enough structure possible to encode whatever infinitely complex states end up being impossible to deduce halting from, so they end up being Collatz-like and then you can go prove things about them using math. As you add states the possible iteration steps go wild and eventually do stuff that is beyond ZFC to analyze.

So the finite value 745 isn't really where the infinity/uncomputability comes from-it comes from the infinite tape that can produce arbitrarily complex functions. (I wonder if over a certain number of states it becomes possible to encoding a larger Turing machine in the tape somehow, causing a sort of divergence to infinite complexity?)

replies(5): >>44406944 #>>44406946 #>>44407071 #>>44409201 #>>44428568 #
dtech ◴[] No.44406946[source]
I am also not an expert, but this does not sound right to me. Godel's incompleteness theorem shows that there are certain things that cannot be proven. Being independent of ZFC means that something is such a case. So BB(643) being independent of ZFC means that we cannot prove or disprove that a certain number is BB(643). Aka we don't have the math to know for certain.
replies(3): >>44407035 #>>44407204 #>>44408681 #
1. SAI_Peregrinus ◴[] No.44408681[source]
Independence from ZFC means we can't prove that any given number is BB(643) using ZFC. It doesn't mean we can't prove it at all, e.g. one could use a stronger set theory like NBG which can prove the consistency of ZFC to verify the value of BB(643). But there would be some n for which BB(n) is independent of that set theory, requiring a yet-stronger theory, and so on ad infinitum.

ZF & ZFC are as important as they are because they're the weakest set theories capable of working as the foundations of mathematics that we've found. We can always add axioms, but taking axioms away & still having a usable theory on which to base mathematics is much more difficult.

replies(2): >>44410146 #>>44428529 #
2. ajkjk ◴[] No.44410146[source]
sure, but it is still very hard to wrap one's head around how the value of a function can be independent of ZFC, and how it could not be for (e.g.) 642 but then be true for 643. That was the point of my post. It seems like you could just... run the function on every 643-state input and see what the value is, which would in some sense constitute a "proof" in ZFC? but maybe not, because you wouldn't even know if you had the answer? That's the part that is so intriguing about it.
replies(1): >>44423814 #
3. SAI_Peregrinus ◴[] No.44423814[source]
Some 643-state inputs never halt. Some 643-state inputs do eventually halt. Only if you can run them for infinite time can you determine whether a given machine halts in a finite length of time: for any finite time you pick, if the machine is still running it could still halt eventually. That's just the halting problem, the impossibility of solving it is quite famous and it's easy to find the proof stated more formally than I want to with the limits of HN's markdown.

The interesting bit is they were able to construct a machine that halts if ZFC is consistent. Since a consistent axiomatic system can never prove its own consistency (another famous proof) ZFC can't prove that this machine halts. And ZFC can't prove that it never halts without running it for infinite steps.

That ZFC-consistency-proving machine has 643 states, so BB(643) either halts after the ZFC-consistency-proving machine or the ZFC-consistency-proving machine never halts. If BB(643) halts after the ZFC-consistency-proving machine, then ZFC is consistent and ZFC can't prove BB(643) halts since ZFC can't prove the ZFC-consistency-proving machine halts.

4. Straw ◴[] No.44428529[source]
Don't you want the weakest (ie makes the fewest assumptions) theory that works?
replies(1): >>44439682 #
5. SAI_Peregrinus ◴[] No.44439682[source]
Yes, which is why ZFC gets used. NBG & MK are stronger and occasionally used, but ZFC being weaker meant it got more popular since it's almost always good enough.