Most of these 'uncomputable' problems are uncomputable in the sense of the halting problem: you can write down an algorithm that should compute them, but it might never halt. That's the sense in which BB(x) is uncomputable: you won't know if you're done ever, because you can't distinguish a machine that never halts from one that just hasn't halted yet (since it has an infinite number of states, you can't just wait for a loop).
So presumably the independence of a number from ZFC is like that also: you can't prove it's the value of BB(745) because you won't know if you've proved it; the only way to prove it is essentially to run those Turing machines until they stop and you'll never know if you're done.
I'm guessing that for the very small Turing machines there is not enough structure possible to encode whatever infinitely complex states end up being impossible to deduce halting from, so they end up being Collatz-like and then you can go prove things about them using math. As you add states the possible iteration steps go wild and eventually do stuff that is beyond ZFC to analyze.
So the finite value 745 isn't really where the infinity/uncomputability comes from-it comes from the infinite tape that can produce arbitrarily complex functions. (I wonder if over a certain number of states it becomes possible to encoding a larger Turing machine in the tape somehow, causing a sort of divergence to infinite complexity?)
Incidentally, Gödel's theorem eventually comes down to a halting-like argument as well (well, a diagonal argument). There is a presentation of it that is in like less than one page in terms of the halting problem---all of the Gödel-numbering stuff is essentially an antiquated proof. I remember seeing this in a great paper which I can't find now, but it's also mentioned as an aside in this blog post: https://scottaaronson.blog/?p=710
wait jk I found it: https://arxiv.org/abs/1909.04569
Usually, "what happens" is that the machines become large enough to represent a form of induction too strong for the axioms to 'reason' about. It's a function of the axioms of your theory, and you can add more axioms to stave it off, but of course you can't prove that your new axioms are consistent without even more axioms.
> There is a presentation of it that is in like less than one page in terms of the halting problem---all of the Gödel-numbering stuff is essentially an antiquated proof.
Only insofar as you can put faith into the Church–Turing thesis to sort out all the technicalities of enumerating and verifying proofs. There still must be an encoding, just not the usual Gödel numbering.