Go has sub-second build times even on massive code-bases. Why? because it doesn't do a lot at build time. It has a simple module system, (relatively) simple type system, and leaves a whole bunch of stuff be handled by the GC at runtime. It's great for its intended use case.
When you have things like macros, advanced type systems, and want robustness guarantees at build time.. then you have to pay for that.
A big reason that amalgamation builds of C and C++ can absolutely fly is because they aren't reparsing headers and generating exactly one object file so the linker has no work to do.
Once you add static linking to the toolchain (in all of its forms) things get really fucking slow.
Codegen is also a problem. Rust tends to generate a lot more code than C or C++, so while the compiler is done doing most of its typechecking work, the backend and assembler has a lot of things to chuck through.
Could you expand on that, please? Every time you run dynmically linked program, it is linked at runtime. (unless it explicitly avoids linking unneccessary stuff by dlopening things lazily; which pretty much never happens). If it is fine to link on every program launch, linking at build time should not be a problem at all.
If you want to have link time optimization, that's another story. But you absolutely don't have to do that if you care about build speed.
I think lazily linking is the default even if you don't use dlopen, i.e. every symbol gets linked upon first use. Of course that has the drawback, that the program can crash due to missing/incompatible libraries in the middle of work.
Anyway, while what you said is theoretically half-true, a fairly large number of libraries are not designed/encapsulated well. This means almost all of their symbols are exported dynamically, so, the idea that there are only "few public exported symbols" is unfortunately false.
However, something almost no one ever mentions is that ELF was actually designed to allow dynamic libraries to be fairly performant. It isn't something I would recommend, as it breaks many assumptions on Unices, (while you don't get the benefits of LTO) you can achieve code generation almost equivalent to static linking by using something like "-fno-semantic-interposition -Wl,-Bsymbolic,-z,now". MaskRay has a good explanation on it: https://maskray.me/blog/2021-05-16-elf-interposition-and-bsy...