It's a lot easier to reason about this using angular resolution, because that's normally what the diffraction limit formula is in reference to. If you know the angular diameter of the system (α) and the wavelength (say λ=500 nm for visible), you can use α ≈ λ/d and solve for the aperture of the telescope (d).
That puts a basic limit on the smallest thing you can resolve with a given aperture. You can use the angular diameter of the planet and the resolution you're after. For Alpha Centauri A it's 8.5 milli arc-second, so O(1 μas) for a 100px image? That's just for the star!
The Event Horizon Telescope can achieve around 20-25 μas in microwave; you need a planet-scale interferometer to do that. https://en.wikipedia.org/wiki/Event_Horizon_Telescope It's possible to do radio measurements in sync with good clocks and fast sampling/storage, much harder with visible.
I'm not super up to date on visible approaches, but there is LISA which will be a large scale interferometer in space. The technology for synchronising the satellites is similar to what you'd need for this in the optical.
https://www.edmundoptics.com/knowledge-center/application-no...
https://arxiv.org/abs/astro-ph/0303634