←back to thread

342 points divbzero | 1 comments | | HN request time: 0.207s | source
Show context
GMoromisato ◴[] No.44401068[source]
In case anyone is wondering, we are (sadly) very far from getting an image of this planet (or any extra-solar planet) that is more than 1 pixel across.

At 110 light-years distance you would need a telescope ~450 kilometers across to image this planet at 100x100 pixel resolution--about the size of a small icon. That is a physical limit based on the wavelength of light.

The best we could do is build a space-based optical interferometer with two nodes 450 kilometers apart, but synchronized to 1 wavelength. That's a really tough engineering challenge.

replies(17): >>44401110 #>>44401184 #>>44401253 #>>44401265 #>>44401398 #>>44402344 #>>44402398 #>>44402585 #>>44402661 #>>44402689 #>>44402874 #>>44403215 #>>44403439 #>>44403929 #>>44403949 #>>44404611 #>>44408076 #
1. vlovich123 ◴[] No.44402398[source]
I thought modern telescopes use software to merge images across a period of time / from multiple telescopes to get a significantly higher resolution than that achieved through the physical limitation of light. At least that’s how all the spy telescopes work and how various ground based telescopes collaborate afaik.

That’s in addition to gravitational lensing effects.