←back to thread

342 points divbzero | 1 comments | | HN request time: 0.24s | source
Show context
GMoromisato ◴[] No.44401068[source]
In case anyone is wondering, we are (sadly) very far from getting an image of this planet (or any extra-solar planet) that is more than 1 pixel across.

At 110 light-years distance you would need a telescope ~450 kilometers across to image this planet at 100x100 pixel resolution--about the size of a small icon. That is a physical limit based on the wavelength of light.

The best we could do is build a space-based optical interferometer with two nodes 450 kilometers apart, but synchronized to 1 wavelength. That's a really tough engineering challenge.

replies(17): >>44401110 #>>44401184 #>>44401253 #>>44401265 #>>44401398 #>>44402344 #>>44402398 #>>44402585 #>>44402661 #>>44402689 #>>44402874 #>>44403215 #>>44403439 #>>44403929 #>>44403949 #>>44404611 #>>44408076 #
1. jmyeet ◴[] No.44402344[source]
Take this even further and it eliminates a whole bunch of possible explanations for the Fermi Paradox.

If, like me, you believe the future of any civilization (including ours) is a Dyson Swarm then you end up with hundreds of millions of orbitals around the Sun between, say, the orbits of Venus and Mars. It's not crowded either. The mean distance between orbitals is ~100,000km.

People often ask why would anyone do this? Easy. Two reasons: land area (per unit mass) and energy. With 10 billion people, that'd be land about the size of Africa each with each person having an energy budget of about the solar output hitting the Earth, a truly incomprehensibly large amount of energy.

So instead of a telescope 450km wide (fia optical interferometry), you have orbitals that are up to ~400 million kilometers apart. The resolution with which you could view very distance worlds is unimaginably high.

Why does this eliminate Fermi Paradox proposed solutions? One idea is that advanced civilizations hide. There is no hiding from a K2 civilization.