←back to thread

342 points divbzero | 1 comments | | HN request time: 0.212s | source
Show context
GMoromisato ◴[] No.44401068[source]
In case anyone is wondering, we are (sadly) very far from getting an image of this planet (or any extra-solar planet) that is more than 1 pixel across.

At 110 light-years distance you would need a telescope ~450 kilometers across to image this planet at 100x100 pixel resolution--about the size of a small icon. That is a physical limit based on the wavelength of light.

The best we could do is build a space-based optical interferometer with two nodes 450 kilometers apart, but synchronized to 1 wavelength. That's a really tough engineering challenge.

replies(17): >>44401110 #>>44401184 #>>44401253 #>>44401265 #>>44401398 #>>44402344 #>>44402398 #>>44402585 #>>44402661 #>>44402689 #>>44402874 #>>44403215 #>>44403439 #>>44403929 #>>44403949 #>>44404611 #>>44408076 #
nico ◴[] No.44401110[source]
How big would the telescope/mirror/lens need to be to get a picture of something in the Alpha Centauri system, 4.37 light years away?

Also, could the image be created by “scanning” a big area and then composing the image from a bunch of smaller ones?

replies(2): >>44401269 #>>44402225 #
1. GMoromisato ◴[] No.44401269[source]
It's linear, so if it is 25 times closer then the telescope can be 25 times smaller. At 4.37 light-years we'd need an 18 kilometer telescope to image at Jupiter-sized planet at 100x100 pixel resolution.

If you only wanted 10x10 resolution you could get by with a 1.8 kilometer telescope.

Wikipedia has more: https://en.wikipedia.org/wiki/Angular_resolution. The Rayleigh criterion is the equation to calculate this.