image gets compressed into 256 tokens before language model sees it. ask it to add a hat and it redraws the whole face; because objects aren't stored as separate things. there's no persistent bear in memory. it all lives inside one fused latent soup, they're fresh samples under new constraints. every prompt tweak rebalances the whole embedding. that's why even small changes ripple across the image. i notice it like single shot scene synthesis, which is good for diff usecases
replies(1):