You need less batteries in orbit than on the ground since you're only in shade for at most like 40 minutes. And it's all far more predictable.
Cooling isn't actually any more difficult than on Earth. You use large radiators and radiate to deep space. The radiators are much smaller than the solar arrays. "Oh but thermos bottles--" thermos bottles use a very low emissivity coating. Space radiators use a high emissivity coating. Literally every satellite manages to deal with heat rejection just fine, and with radiators (if needed) much smaller than the solar arrays.
Latency is potentially an issue if in a high orbit, but in LEO can be very small.
Equipment upgrades and maintenance is impossible? Literally, what is ISS, where this is done all the time?
Radiation shielding isn't free, but it's not necessarily that expensive either.
Orbital maintainence is not a serious problem with low cost launch.
The upside is effectively unlimited energy. No other place can give you terawatts of power. At that scale, this can be cheaper than terrestrially.