Then there's the fact that heat is very difficult to get rid of when in space. The ISS's radiators are much bigger than its solar panels. If you wanted to have a very-long eva spacesuit you'd have to have radiators much bigger than your body hanging off of it. Short evas are handled by starting the eva with cold liquids in the suit and letting them heat up.
All of the mockups of starships going to Mars mostly fail to represent where they're going to put the radiators to get rid of all the excess heat.
I think you’re missing the key point - heat transfer. The reason we feel hot at the beach is not solely because of heat we absorb directly from solar energy. Some of the heat we feel is the lack of cooling because the surrounding air is warm, and our bodies cannot reject heat into it as easily as we can into air that is cool. And some is from heat reflecting up from the sand.
Theres a heat wave across much of the US right now. Even when the sun goes down it will still be hot. People will still be sweating , doing nothing, sitting on their porches. Because the air and the surrounding environment has absorbed the sun’s heat all day and is storing it.
That’s what you’re neglecting in your analysis of space.