I'm just a bit skeptical about this quote:
> Harper takes advantage of decades of natural language research to analyze exactly how your words come together.
But it's just a rather small collection of hard-coded rules:
https://docs.rs/harper-core/latest/harper_core/linting/trait...
Where did the decades of classical NLP go? No gold-standard resources like WordNet? No statistical methods?
There's nothing wrong with this, the solution is a good pragmatic choice. It's just interesting how our collective consciousness of expansive scientific fields can be so thoroughly purged when a new paradigm arises.
LLMs have completely overshadowed ML NLP methods from 10 years ago, and they themselves replaced decades statistical NLP work, which also replaced another few decades of symbolic grammar-based NLP work.
Progress is good, but it's important not to forget all those hard-earned lessons, it can sometimes be a real superpower to be able to leverage that old toolbox in modern contexts. In many ways, we had much more advanced methods in the 60s for solving this problem than what Harper is doing here by naively reinventing the wheel.