Whether you find that you get $250 worth out of that subscription is going to be the big question
Whether you find that you get $250 worth out of that subscription is going to be the big question
Moore's law should help as well, shouldn't it? GPUs will keep getting cheaper.
Unless the models also get more GPU hungry, but 2025-level performance, at least, shouldn't get more expensive.
Of course, this is observably false as we have a long list of smaller models that require fewer resources to train and/or deploy with equal or better performance than larger ones. That's without using distillation, reduced precision/quantization, pruning, or similar techniques[0].
The real thing we need is more investment into reducing computational resources to train and deploy models and to do model optimization (best example being Llama CPP). I can tell you from personal experience that there is much lower interest in this type of research and I've seen plenty of works rejected because "why train a small model when you can just tune a large one?" or "does this scale?"[1] I'd also argue that this is important because there's not infinite data nor compute.
[0] https://arxiv.org/abs/2407.05694
[1] Those works will out perform the larger models. The question is good, but this creates a barrier to funding. Costs a lot to test at scale, you can't get funding if you don't have good evidence, and it often won't be considered evidence if it isn't published. There's always more questions, every work is limited, but smaller compute works have higher bars than big compute works.
Welcome to cloud world, where devs believe that compute is in fact infinite, so why bother profiling and improving your code? You can just request more cores and memory, and the magic K8s box will dutifully spawn more instances for you.