Since AI performs better the more context you give it, we think solving AI privacy will unlock more valuable AI applications, just how TLS on the Internet enabled e-commerce to flourish knowing that your credit card info wouldn't be stolen by someone sniffing internet packets.
We come from backgrounds in cryptography, security, and infrastructure. Jules did his PhD in trusted hardware and confidential computing at MIT, and worked with NVIDIA and Microsoft Research on the same, Sacha did his PhD in privacy-preserving cryptography at MIT, Nate worked on privacy tech like Tor, and I (Tanya) was on Cloudflare's cryptography team. We were unsatisfied with band-aid techniques like PII redaction (which is actually undesirable in some cases like AI personal assistants) or “pinky promise” security through legal contracts like DPAs. We wanted a real solution that replaced trust with provable security.
Running models locally or on-prem is an option, but can be expensive and inconvenient. Fully Homomorphic Encryption (FHE) is not practical for LLM inference for the foreseeable future. The next best option is using secure enclaves: a secure environment on the chip that no other software running on the host machine can access. This lets us perform LLM inference in the cloud while being able to prove that no one, not even Tinfoil or the cloud provider, can access the data. And because these security mechanisms are implemented in hardware, there is minimal performance overhead.
Even though we (Tinfoil) control the host machine, we do not have any visibility into the data processed inside of the enclave. At a high level, a secure enclave is a set of cores that are reserved, isolated, and locked down to create a sectioned off area. Everything that comes out of the enclave is encrypted: memory and network traffic, but also peripheral (PCIe) traffic to other devices such as the GPU. These encryptions are performed using secret keys that are generated inside the enclave during setup, which never leave its boundaries. Additionally, a “hardware root of trust” baked into the chip lets clients check security claims and verify that all security mechanisms are in place.
Up until recently, secure enclaves were only available on CPUs. But NVIDIA confidential computing recently added these hardware-based capabilities to their latest GPUs, making it possible to run GPU-based workloads in a secure enclave.
Here’s how it works in a nutshell:
1. We publish the code that should run inside the secure enclave to Github, as well as a hash of the compiled binary to a transparency log called Sigstore
2. Before sending data to the enclave, the client fetches a signed document from the enclave which includes a hash of the running code signed by the CPU manufacturer. It then verifies the signature with the hardware manufacturer to prove the hardware is genuine. Then the client fetches a hash of the source code from a transparency log (Sigstore) and checks that the hash equals the one we got from the enclave. This lets the client get verifiable proof that the enclave is running the exact code we claim.
3. With the assurance that the enclave environment is what we expect, the client sends its data to the enclave, which travels encrypted (TLS) and is only decrypted inside the enclave.
4. Processing happens entirely within this protected environment. Even an attacker that controls the host machine can’t access this data. We believe making end-to-end verifiability a “first class citizen” is key. Secure enclaves have traditionally been used to remove trust from the cloud provider, not necessarily from the application provider. This is evidenced by confidential VM technologies such as Azure Confidential VM allowing ssh access by the host into the confidential VM. Our goal is to provably remove trust both from ourselves, aka the application provider, as well as the cloud provider.
We encourage you to be skeptical of our privacy claims. Verifiability is our answer. It’s not just us saying it’s private; the hardware and cryptography let you check. Here’s a guide that walks you through the verification process: https://docs.tinfoil.sh/verification/attestation-architectur....
People are using us for analyzing sensitive docs, building copilots for proprietary code, and processing user data in agentic AI applications without the privacy risks that previously blocked cloud AI adoption.
We’re excited to share Tinfoil with HN!
* Try the chat (https://tinfoil.sh/chat): It verifies attestation with an in-browser check. Free, limited messages, $20/month for unlimited messages and additional models
* Use the API (https://tinfoil.sh/inference): OpenAI API compatible interface. $2 / 1M tokens
* Take your existing Docker image and make it end to end confidential by deploying on Tinfoil. Here's a demo of how you could use Tinfoil to run a deepfake detection service that could run securely on people's private videos: https://www.youtube.com/watch?v=_8hLmqoutyk. Note: This feature is not currently self-serve.
* Reach out to us at contact@tinfoil.sh if you want to run a different model or want to deploy a custom application, or if you just want to learn more!
Let us know what you think, we’d love to hear about your experiences and ideas in this space!
I have worked for many enterprise companies e.g. banks who are trialling AI and none of them have any use for something like this. Because the entire foundation of the IT industry is based on trusting the privacy and security policies of Azure, AWS and GCP. And in the decades since they've been around not heard of a single example of them breaking this.
The proposition here is to tell a company that they can trust Azure with their banking websites, identity services and data engineering workloads but not for their model services. It just doesn't make any sense. And instead I should trust a YC startup who statistically is going to be gone in a year and will likely have their own unique set of security and privacy issues.
Also you have the issue of smaller sized open source models e.g. DeepSeek R1 lagging far behind the bigger ones and so you're giving me some unnecessary privacy attestation at the expense of a model that will give me far better accuracy and performance.
As former CTO of world's largest bank and cloud architect at world's largest hedge fund, this is exactly opposite of my experience with both regulated finance enterprises and the CSPs vying to serve them.
The entire foundation of the IT industry is based on trusting the privacy and security policies of Azure, AWS and GCP. And in the decades since they've been around not heard of a single example of them breaking this.
On the contrary, many global banks design for the assumption the "CSP is hostile". What happened to Coinbase's customers the past few months shows why your vendor's insider threat is your threat and your customers' threat.
Granted, this annoys CSPs who wish regulators would just let banks "adopt" the CSP's controls and call it a day.
Unfortunately for CSP sales teams — certainly this could change with recent regulator policy changes — the regulator wins. Until very recently, only one CSP offered controls sufficient to assure your own data privacy beyond a CSP's pinky-swears. AWS Nitro Enclaves can provide a key component in that assurance, using deployment models such as tinfoil.