This is _not_ the first human to be treated with a treatment under the wide umbrella of gene therapy based on their own edited genes. There probably is a more narrow first here but the technical details get lost in journalism which is a shame.
This is _not_ the first human to be treated with a treatment under the wide umbrella of gene therapy based on their own edited genes. There probably is a more narrow first here but the technical details get lost in journalism which is a shame.
What's intriguing is not the 'custom' part, but the speed part (which permits it to be custom). Part of what makes CRISPR so powerful is that it can easily be 'adjusted' to work on different sequences based on a quick (DNA) string change - a day or two. Prior custom protein engineering would take minimum of months at full speed to 'adjust'.
That ease of manipulating DNA strings to enable rapid turnaround is similar to the difference between old-school protein based vaccines and the mRNA based vaccines. When you're manipulating 'source code' nucleic acid sequences you can move very quickly compared to manipulating the 'compiled' protein.
That was one of the first cases of _germline_ gene editing using CRISPR - NOT "the first instance of gene editing." There have been quite a few other genetic editing tools that predate CRISPR, and there have been other edits using CRISPR that were not of the entire human's genome.
https://www.whatisbiotechnology.org/index.php/science/summar...
https://www.npr.org/2023/06/08/1178695152/china-scientist-he...
This research is instead a therapy used to treat an already born baby, and it doesn't modify all the cells in the body. Many cells in the body that are transformed by this technique will eventually die and be replaced by clones of stem cells which weren't transformed. I haven't read in detail about whether this therapy targets stem cells, and how long term effective the treatment will be- hepatocytes (liver cells) turn over constantly, so I would expect if the treatment did not affect the hepatocyte stem cells, it would only last ~months and the treatment would have to be repeated.
A quick search suggests that liver regen involves dividing mature liver cells to replace turnover. If so, I'd suspect that they'd continue to carry the.crispr edit forward.