←back to thread

176 points nxa | 1 comments | | HN request time: 0.314s | source

I've been playing with embeddings and wanted to try out what results the embedding layer will produce based on just word-by-word input and addition / subtraction, beyond what many videos / papers mention (like the obvious king-man+woman=queen). So I built something that doesn't just give the first answer, but ranks the matches based on distance / cosine symmetry. I polished it a bit so that others can try it out, too.

For now, I only have nouns (and some proper nouns) in the dataset, and pick the most common interpretation among the homographs. Also, it's case sensitive.

1. neom ◴[] No.43989967[source]
cool but not enough data to be useful yet I guess. Most of mine either didn't have the words or were a few % off the answer, vehicle - road + ocean gave me hydrosphere, but the other options below were boat, ship, etc. Klimt almost made it from Mozart - music + painting. doctor - hospital + school = teacher, nailed it.

Getting to cornbread elegantly has been challenging.