Feel free to point me to docs / code if these are lazy questions :)
Why a hybrid? Vector databases are useful for similarity queries, while graph databases are useful for relationship queries. Each stores data in a way that’s best for its main type of query (e.g. key-value stores vs. node-and-edge tables). However, many AI-driven applications need both similarity and relationship queries. For example, you might use vector-based semantic search to retrieve relevant legal documents, and then use graph traversal to identify relationships between cases.
Developers of such apps have the quandary of needing to build on top of two different databases—a vector one and a graph one—plus you have to link them together and sync the data. Even then, your two databases aren't designed to work together—for example, there’s no native way to perform joins or queries that span both systems. You’ll need to handle that logic at the application level.
Helix started when we realized that there are ways to integrate vector and graph data that are both fast and suitable for AI applications, especially RAG-based ones. See this cool research paper: https://arxiv.org/html/2408.04948v1. After reading that and some other papers on graph and hybrid RAG, we decided to build a hybrid DB. Our aim was to make something better to use from a developer standpoint, while also making it fast as hell.
After a few months of working on this as a side project, our benchmarking shows that we are on par with Pinecone and Qdrant for vectors, and our graph is up to three orders of magnitude faster than Neo4j.
Problems where a hybrid approach works particularly well include:
- Indexing codebases: you can vectorize code-snippets within a function (connected by edges) based on context and then create an AST (in a graph) from function calls, imports, dependencies, etc. Agents can look up code by similarity or keyword and then traverse the AST to get only the relevant code, which reduces hallucinations and prevents the LLM from guessing object shapes or variable/function names.
- Molecule discovery: Model biological interactions (e.g., proteins → genes → diseases) using graph types and then embed molecule structures to find similar compounds or case studies.
- Enterprise knowledge management: you can represent organisational structure, projects, and people (e.g., employee → team → project) in graph form, then index internal documents, emails, or notes as vectors for semantic search and link them directly employees/teams/projects in the graph.
I naively assumed when learning about databases for the first time that queries would be compiled and executed like functions in traditional programming. Turns out I was wrong, but this creates unnecessary latency by sending extra data (the whole written query), compiling it at run time, and then executing it. With Helix, you write the queries in our query language (HelixQL), which is then transpiled into Rust code and built directly into the database server, where you can call a generated API endpoint.
Many people have a thing against “yet another query language” (doubtless for good reason!) but we went ahead and did it anyway, because we think it makes working with our database so much easier that it’s worth a bit of a learning curve. HelixQL takes from other query languages such as Gremlin, Cypher and SQL with some extra ideas added in. It is declarative while the traversals themselves are functional. This allows complete control over the traversal flow while also having a cleaner syntax. HelixQL returns JSON to make things easy for clients. Also, it uses a schema, so the queries are type-checked.
We took a crude approach to building the original graph engine as a way to get an MVP out, so we are now working on improving the graph engine by making traversals massively parallel and pipelined. This means data is only ever decoded from disk when it is needed, and parts of reads are all processed in parallel.
If you’d like to try it out in a simple RAG demo, you can follow this guide and run our Jupyter notebook: https://github.com/HelixDB/helix-db/tree/main/examples/rag_d...
Many thanks! Comments and feedback welcome!
Feel free to point me to docs / code if these are lazy questions :)
For keys we are using UUIDs, but using the v6 timestamped uuids so that they are easily lexicographically ordered at creation time. This means keys inserted into LMDB are inserted using the APPEND flag, meaning LMDB shortcuts to the rightmost leaf in its B-Tree (rather than starting at the root) and appends the new record. It can do this because the records are ordered by creation time meaning each new record is guaranteed to be larger (in terms of big-endian byte order) than the previous record.
We also store the UUIDs as u128 values for two reasons. The first is that a u128 takes up 16 bytes where as a string UUID takes up 36 bytes. This means we store 56% less data and LMDB has to decode 56% less bytes when doing code accesses.
For the outgoing/incoming edges for nodes, we store them as fixed sizes which means LMDB packs them in, removing the 8 byte header per Key-Value pair.
In the future, we are also going to separate the properties from the stored value as empty property objects still take up 8 bytes of space. We will also make it so nothing is inserted if the properties are empty.
You can see most of this in action in the storage core file: https://github.com/HelixDB/helix-db/blob/main/helixdb/src/he...