Most spreadsheet apps choke on big files. Coding in pandas or Polars works—but not everyone wants to write scripts just to filter or merge CSVs. CSV GB+ gives you a fast, point-and-click interface built on dual backends (memory-optimized or disk-backed) so you can process huge datasets offline.
Key Features: Handles massive CSVs with ease — merge, split, dedup, filter, batch export
Smart engine switch: disk-based "V Core" or RAM-based "P Core"
All processing is offline – no data upload or telemetry
Supports CSV, XLSX, JSON, DBF, Parquet and more
Designed for data pros, students, and privacy-conscious users
Register for 7-days free to pro try, pro versions remove row limits and unlock full features. I’m a solo dev building Data.olllo as a serious alternative to heavy coding or bloated enterprise tools.
Download for Windows: https://apps.microsoft.com/detail/9PFR86LCQPGS
User Guide: https://olllo.top/articles/article-0-Data.olllo-UserGuide
Would love feedback! I’m actively improving it based on real use cases.
It‘s interesting to research how capable applications like Lotus123 have been even on low resolutions like 800x600 pixel compared to today’s standard
I created Buckaroo to provide a better table viewing experience inside of notebooks. I also built a low code UI and auto cleaning to expedite the wrote data cleaning tasks that take up a large portion of data analysis. Autocleaning is heuristically powered - no LLMs, so it's fast and your data stays local. You can apply different autocleaning strategies and visually inspect the results. When you are happy with the cleaning, you can copy and paste the python code as a reusable function.
All of this is open source, and its extendable/customizable.
Here's a video walking through autocleaning and how to extend it https://youtu.be/A-GKVsqTLMI
Here's the repo: https://github.com/paddymul/buckaroo