←back to thread

602 points emrah | 1 comments | | HN request time: 0.205s | source
Show context
simonw ◴[] No.43743896[source]
I think gemma-3-27b-it-qat-4bit is my new favorite local model - or at least it's right up there with Mistral Small 3.1 24B.

I've been trying it on an M2 64GB via both Ollama and MLX. It's very, very good, and it only uses ~22Gb (via Ollama) or ~15GB (MLX) leaving plenty of memory for running other apps.

Some notes here: https://simonwillison.net/2025/Apr/19/gemma-3-qat-models/

Last night I had it write me a complete plugin for my LLM tool like this:

  llm install llm-mlx
  llm mlx download-model mlx-community/gemma-3-27b-it-qat-4bit

  llm -m mlx-community/gemma-3-27b-it-qat-4bit \
    -f https://raw.githubusercontent.com/simonw/llm-hacker-news/refs/heads/main/llm_hacker_news.py \
    -f https://raw.githubusercontent.com/simonw/tools/refs/heads/main/github-issue-to-markdown.html \
    -s 'Write a new fragments plugin in Python that registers
    issue:org/repo/123 which fetches that issue
        number from the specified github repo and uses the same
        markdown logic as the HTML page to turn that into a
        fragment'
It gave a solid response! https://gist.github.com/simonw/feccff6ce3254556b848c27333f52... - more notes here: https://simonwillison.net/2025/Apr/20/llm-fragments-github/
replies(11): >>43743949 #>>43744205 #>>43744215 #>>43745256 #>>43745751 #>>43746252 #>>43746789 #>>43747326 #>>43747968 #>>43752580 #>>43752951 #
1. bobjordan ◴[] No.43747968[source]
Thanks for the call out on this model! I have 42gb usable VRAM on my ancient (~10yrs old) quad-sli titan-x workstation and have been looking for a model to balance large context window with output quality. I'm able to run this model with a 56K context window and it just fits into my 42gb VRAM to run 100% GPU. The output quality is really good and 56K context window is very usable. Nice find!