←back to thread

Four Years of Jai (2024)

(smarimccarthy.is)
166 points xixixao | 1 comments | | HN request time: 0.206s | source
Show context
pcwalton ◴[] No.43726315[source]
> I’d be much more excited about that promise [memory safety in Rust] if the compiler provided that safety, rather than asking the programmer to do an extraordinary amount of extra work to conform to syntactically enforced safety rules. Put the complexity in the compiler, dudes.

That exists; it's called garbage collection.

If you don't want the performance characteristics of garbage collection, something has to give. Either you sacrifice memory safety or you accept a more restrictive paradigm than GC'd languages give you. For some reason, programming language enthusiasts think that if you think really hard, every issue has some solution out there without any drawbacks at all just waiting to be found. But in fact, creating a system that has zero runtime overhead and unlimited aliasing with a mutable heap is as impossible as finding two even numbers whose sum is odd.

replies(4): >>43726355 #>>43726431 #>>43727184 #>>43731326 #
mjburgess ◴[] No.43726431[source]
Well, 1) the temporary allocator strategy; and 2) `defer` kinda go against the spirit of this observation.

With (1) you get the benefits of GC with, in many cases, a single line of code. This handles a lot of use cases. Of those it doesn't, `defer` is that "other single line".

I think the issue being raised is the "convenience payoff for the syntax/semantics burden". The payoff for temp-alloc and defer is enormous: you make the memory management explicit so you can easily see-and-reason-about the code; and it's a trivial amount of code.

There feels something deeply wrong with RAII-style langauges.. you're having the burden to reason about implicit behaviour, all the while this behaviour saves you nothing. It's the worst of both worlds: hiddenness and burdensomeness.

replies(2): >>43726458 #>>43729593 #
hmry ◴[] No.43726458[source]
Neither of those gives memory safety, which is what the parent comment is about. If you release the temporary allocator while a pointer to some data is live, you get use after free. If you defer freeing a resource, and a pointer to the resource lives on after the scope exit, you get use after free.
replies(2): >>43726531 #>>43726581 #
francasso ◴[] No.43726531[source]
While technically true, it still simplifies memory management a lot. The tradeoff in fact is good enough that I would pick that over a borrowchecker.
replies(1): >>43726637 #
junon ◴[] No.43726637[source]
I don't understand this take at all. The borrow checker is automatic and works across all variables. Defer et al requires you remember to use it, and use it correctly. It takes more effort to use defer correctly whereas Rust's borrow checker works for you without needing to do much extra at all! What am I missing?
replies(3): >>43726754 #>>43726792 #>>43729431 #
vouwfietsman ◴[] No.43726754[source]
> The borrow checker is automatic and works across all variables.

Not that I'm such a Rust hater, but this is also a simplification of the reality. The term "fighting the borrow checker" is these days a pretty normal saying, and it implies that the borrow checker may be automatic, but 90% of its work is telling you: no, try again. That is hardly "without needing to do much extra at all".

That's what you're missing.

replies(2): >>43726882 #>>43727057 #
tialaramex ◴[] No.43727057[source]
What's hilarious about "fighting the borrow checker" is that it's about the lexical lifetime borrow checking, which went away many years ago - fixing that is what "Non-lexical lifetimes" is about, which if you picked up Rust in the last like 4-5 years you won't even know was a thing. In that era you actually did need to "fight" to get obviously correct code to compile because the checking is only looking at the lexical structure.

Because this phrase existed, it became the thing people latch onto as a complaint, often even when there is no borrowck problem with what they were writing.

Yes of course when you make lifetime mistakes the borrowck means you have to fix them. It's true that in a sense in a GC language you don't have to fix them (although the consequences can be pretty nasty if you don't) because the GC will handle it - and that in a language like Jai you can just endure the weird crashes (but remember this article, the weird crashes aren't "Undefined Behaviour" apparently, even though that's exactly what they are)

As a Rust programmer I'm comfortable with the statement that it's "without needing to do much extra at all".

replies(2): >>43727824 #>>43731131 #
sensen7 ◴[] No.43727824[source]
>In that era you actually did need to "fight" to get obviously correct code to compile because the checking is only looking at the lexical structure.

NLL's final implementation (Polonius) hasn't landed yet, and many of the original cases that NLL were meant to allow still don't compile. This doesn't come up very often in practice, but it sure sounds like a hole in your argument.

What does come up in practice is partial borrowing errors. It's one of the most common complaints among Rust programmers, and it definitely qualifies as having to fight/refactor to get obviously correct code to compile.

replies(1): >>43728841 #
steveklabnik ◴[] No.43728841[source]
> What does come up in practice is partial borrowing errors.

For some people. For example, I personally have never had a partial borrowing error.

> it definitely qualifies as having to fight/refactor to get obviously correct code to compile.

This is not for sure. That is, while it's code that could work, it's not obviously clear that it's correct. Rust cares a lot about the contract of function signatures, and partial borrows violate the signature, that's why they're not allowed. Some people want to relax that restriction. I personally think it's a bad idea.

replies(2): >>43729206 #>>43731906 #
1. ◴[] No.43731906[source]