However, if memory serves me right, TVar is a building block for the transactional memory subsystem. The guard on TVar with, say, modifyTVar is not really stopping execution at entrance but simply indicating that the block modifies the variable. In my mental model, some magic happens in an STM block that checks if two concurrent STM blocks acted upon the same data at the same time, and if so, it reverts the computations of one of the blocks and repeats them with new data.
To my knowledge, Haskell is the only programming language (+runtime) that has a working transactional memory subsystem. It has been in the language for about 20 years, and in that time many have tried (and failed) to also implement STM.
Haskell's STM is pretty world-class though. That's fair to say :)
Basically it's the difference between focusing only on transactional variables without having a good way of marking what is and isn't part of a larger transaction and having a higher-order abstraction of an `STM` action that clearly delineates what things are transactions and what aren't.
But I’ve never heard someone say it messed up in any way, that it was buggy or hard to use or failed to deliver on its promises.
Not atoms.
From Hickey’s History of Clojure paper:
“ Taking on the design and implementation of an STM was a lot to add atop designing a programming language. In practice, the STM is rarely needed or used. It is quite common for Clojure programs to use only atoms for state, and even then only one or a handful of atoms in an entire program. But when a program needs coordinated state it really needs it, and without the STM I did not think Clojure would be fully practical.”
https://dl.acm.org/doi/pdf/10.1145/3386321
Atoms do an atomic compare and swap. It’s not the same thing.