Well, it would not be a class in that case, but a use case would be anything that is modular where you want to support a new function, but do not require all of your implementors to use it. The best example of this is the VFS. Here is documentation for the Linux VFS:
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
The vast majority of the function pointers in those structures are optional (even if not explicitly stated). To give a few common sense examples:
* If your filesystem does not support extended attributes, you would not implement .listxattr and instead set it to NULL.
* There are multiple ways of implementing read and write in file_operations. You have the basic read and write operations, and more efficient variants. You don’t need to implement the more efficient variants if you don’t want to implement them.
* The .bmap call is used to find out how the filesystem stores a file on a block device, which used to be used by the syslinux (and might still be). This obviously is incompatible with NFS (or any multidisk filesystem like ZFS) so it absolutely must be optional.
Then there are other options, like not supporting mmap, or not supporting creation/removal of subdirectories. That sounds absurd, but some FUSE filesystems, particularly those exporting a program’s statistics, don’t bother with either of those since they are not needed. I do not believe Linux sysfs allows users to make directories either.
I could continue, but this gives a few examples of why you might want to have optional functionality in a class-like interface.
By the way, I mentioned setting things you do not implement to NULL. This is done simply by not specifying them when using the structure initializer syntax. The compiler will zero unspecified members.