- Qwen 2.5 VL (72b and 32b)
- Gemma-3 (27b)
- DeepSeek-v3-0324
And a couple weeks ago we got the new mistral-ocr model. We updated our OCR benchmark to include the new models.
We evaluated 1,000 documents for JSON extraction accuracy. Major takeaways:
- Qwen 2.5 VL (72b and 32b) are by far the most impressive. Both landed right around 75% accuracy (equivalent to GPT-4o’s performance). Qwen 72b was only 0.4% above 32b. Within the margin of error.
- Both Qwen models passed mistral-ocr (72.2%), which is specifically trained for OCR.
- Gemma-3 (27B) only scored 42.9%. Particularly surprising given that it's architecture is based on Gemini 2.0 which still tops the accuracy chart.
The data set and benchmark runner is fully open source. You can check out the code and reproduction steps here:
- https://getomni.ai/blog/benchmarking-open-source-models-for-...
Not sure if it matters but I exported a PDF page as a PNG with 200dpi resolution, and used that.
It seems like it's reading the text but getting the details wrong.
I would not be comfortable using this in an official capacity without more accuracy. I could see using this for words that another OCR system is uncertain about, though, as a fallback.