←back to thread

208 points themanmaran | 1 comments | | HN request time: 0.217s | source

Last week was big for open source LLMs. We got:

- Qwen 2.5 VL (72b and 32b)

- Gemma-3 (27b)

- DeepSeek-v3-0324

And a couple weeks ago we got the new mistral-ocr model. We updated our OCR benchmark to include the new models.

We evaluated 1,000 documents for JSON extraction accuracy. Major takeaways:

- Qwen 2.5 VL (72b and 32b) are by far the most impressive. Both landed right around 75% accuracy (equivalent to GPT-4o’s performance). Qwen 72b was only 0.4% above 32b. Within the margin of error.

- Both Qwen models passed mistral-ocr (72.2%), which is specifically trained for OCR.

- Gemma-3 (27B) only scored 42.9%. Particularly surprising given that it's architecture is based on Gemini 2.0 which still tops the accuracy chart.

The data set and benchmark runner is fully open source. You can check out the code and reproduction steps here:

- https://getomni.ai/blog/benchmarking-open-source-models-for-...

- https://github.com/getomni-ai/benchmark

- https://huggingface.co/datasets/getomni-ai/ocr-benchmark

1. ks2048 ◴[] No.43551496[source]
I've been doing some experiments with the OCR API on macOS lately and wonder how it compares to these LLMs.

Overall, it's very impressive, but makes some mistakes (on easy images - i.e. obviously wrong) that require human intervention.

I would like to compare it to these models, but this benchmark is beyond OCR - extracted structured JSON.