←back to thread

896 points tux3 | 1 comments | | HN request time: 0.288s | source
Show context
jerf ◴[] No.43546861[source]
One of my Core Memories when it comes to science, science education, and education in general was in my high school physics class, where we had to do an experiment to determine the gravitational acceleration of Earth. This was done via the following mechanism: Roll a ball off of a standard classroom table. Use a 1990s wristwatch's stopwatch mechanism to start the clock when the ball rolls of the table. Stop the stopwatch when the ball hits the floor.

Anyone who has ever had a wristwatch of similar tech should know how hard it is to get anything like precision out of those things. It's a millimeter sized button with a millimeter depth of press and could easily need half a second of jabbing at it to get it to trigger. It's for measuring your mile times in minutes, not fractions of a second fall times.

Naturally, our data was total, utter crap. Any sensible analysis would have error bars that, if you treat the problem linearly, would have put 0 and negative numbers within our error bars. I dutifully crunched the numbers and determined that the gravitational constant was something like 6.8m/s^2 and turned it in.

Naturally, I got a failing grade, because that's not particularly close, and no matter how many times you are solemnly assured otherwise, you are never graded on whether you did your best and honestly report what you observe. From grade school on, you are graded on whether or not the grading authority likes the results you got. You might hope that there comes some point in your career where that stops being the case, but as near as I can tell, it literally never does. Right on up to professorships, this is how science really works.

The lesson is taught early and often. It often sort of baffles me when other people are baffled at how often this happens in science, because it more-or-less always happens. Science proceeds despite this, not because of it.

(But jerf, my teacher... Yes, you had a wonderful teacher who didn't only give you an A for the equivalent but called you out in class for your honesty and I dunno, flunked everyone who claimed they got the supposed "correct" answer to three significant digits because that was impossible. There are a few shining lights in the field and I would never dream of denying that. Now tell me how that idealism worked for you going forward the next several years.)

replies(45): >>43546960 #>>43547056 #>>43547079 #>>43547302 #>>43547336 #>>43547355 #>>43547446 #>>43547723 #>>43547735 #>>43547819 #>>43547923 #>>43548145 #>>43548274 #>>43548463 #>>43548511 #>>43548631 #>>43548831 #>>43549160 #>>43549199 #>>43549233 #>>43549287 #>>43549330 #>>43549336 #>>43549418 #>>43549581 #>>43549631 #>>43549681 #>>43549726 #>>43549824 #>>43550069 #>>43550308 #>>43550776 #>>43550923 #>>43551016 #>>43551519 #>>43552066 #>>43552407 #>>43552473 #>>43552498 #>>43553305 #>>43554349 #>>43554595 #>>43555018 #>>43555061 #>>43555827 #
don-code ◴[] No.43548274[source]
This is, more or less, exactly what happened when I took Electronics I in college.

The course was structured in such a way that you could not move on to the next lab assignment until you completed the one before it. You could complete the lab assignments at your own pace. If you failed the lab, you failed the class, regardless of your grade.

The second or third lab had us characterize the response of a transistor in a DIP-8 package, which was provided to us. If you blew it up, you got a slap on the wrist. That DIP-8 was otherwise yours for the class.

I could _never_ get anything resembling linear output out of my transistor. The lab tech was unhelpful, insisting that it must be something with how I had it wired, encouraging me to re-draw my schematic, check my wires, and so on. It could _never_ be the equipment's fault.

Eight (!) weeks into that ten week class, I found the problem: the DIP was not, in fact, just a transistor. It was a 555 timer that had somehow been mixed in with the transistors.

I went and showed the lab technician. He gave me another one. At this point, I had two weeks to complete eight weeks of lab work, which was borderline impossible. So I made an appointment to see the professor, and his suggestion to me was to drop the class and take it again. Which, of course, would've affected my graduation date.

I chose to take a horrible but passing grade in the lab, finished the class with a C- (which was unusual for me), and went on to pretend that the whole thing never happened.

replies(17): >>43548368 #>>43548469 #>>43548484 #>>43548871 #>>43549249 #>>43549256 #>>43549629 #>>43549683 #>>43550176 #>>43550399 #>>43551048 #>>43551251 #>>43551551 #>>43553532 #>>43554766 #>>43554936 #>>43556056 #
Natsu ◴[] No.43549249[source]
It's funny, because while that's a terrible educational experience, you actually learned some important lessons despite them.

I remember the first time I found out that the software documentation I had been relying upon was simply and utterly wrong. It was so freeing to start looking at how things actually behaved instead of believing the utterly false documentation because the world finally made sense again.

replies(3): >>43549498 #>>43549523 #>>43549811 #
mandevil ◴[] No.43549811[source]
I took and then TA'd a class where the semester long project was to control robots (it was a software engineering principles class, the actual code writing could be done in a single weekend, but you had to do all the other stuff of software engineering- requirements analysis and documentation etc).

We had a software simulator of the robots, and the first lab was everyone dutifully writing the code that worked great on the simulator, and only then did we unlock the real robots and give you 2-3 minutes with the real robot. And the robot never moved that first lab, because the simulator had a bug, and didn't actually behave like the real robot did. We didn't deliberately design the robot that way, it came like that, but in a decade of doing the class we never once tried to fix the simulator because that was an incredibly important lesson we wanted to teach the students: documentation lies. Simulators aren't quite right. Trust no one, not even your mentor/TA/Professor.

We did not actually grade anyone on their robot failing to move, no grade was given on that first lab experience because everyone failed to move the robot. But they still learned the lesson.

replies(2): >>43550079 #>>43550813 #
1. hermitdev ◴[] No.43550813[source]
> because the simulator had a bug

I had something similar happen when I was taking microcomputers (a HW/SW codesign class at my school). We had hand-built (as in everything was wire wrapped) 68k computers we were using and could only download our code over a 1200-baud serial line. Needless to say, it was slow as hell, even for the day (early 2000s). So, we used a 68k emulator to do most of our development work and testing.

Late one night (it was seriously like 1 or 2 am), our prof happened by the lab as we were working and asked to see how it was going. I was project lead and had been keeping him apprised and was confident we were almost complete. After waiting the 20 minutes to download our code (it was seriously only a couple dozen kb of code), it immediately failed, yet we could show it worked on the simulator. We single-stepped through the code (the only "debugger" we had available was a toggle switch for the clock and an LED hex readout of the 16-bit data bus). I had spent enough time staring at the bus over the course of the semester that I'd gotten quite good at decoding the instructions in my head. I immediately saw that we were doing a word-compare (16-bit) instead of a long-compare (32-bit) on an address. The simulator treated all address compares are 32-bit, regardless of the actual instruction. The real hardware, of course, did not. It was a simple fix. Literally one-bit. Did it in-memory on the computer instead of going through the 20-minute download again. Everything magically worked. Professor was impressed, too.