Anyone who has ever had a wristwatch of similar tech should know how hard it is to get anything like precision out of those things. It's a millimeter sized button with a millimeter depth of press and could easily need half a second of jabbing at it to get it to trigger. It's for measuring your mile times in minutes, not fractions of a second fall times.
Naturally, our data was total, utter crap. Any sensible analysis would have error bars that, if you treat the problem linearly, would have put 0 and negative numbers within our error bars. I dutifully crunched the numbers and determined that the gravitational constant was something like 6.8m/s^2 and turned it in.
Naturally, I got a failing grade, because that's not particularly close, and no matter how many times you are solemnly assured otherwise, you are never graded on whether you did your best and honestly report what you observe. From grade school on, you are graded on whether or not the grading authority likes the results you got. You might hope that there comes some point in your career where that stops being the case, but as near as I can tell, it literally never does. Right on up to professorships, this is how science really works.
The lesson is taught early and often. It often sort of baffles me when other people are baffled at how often this happens in science, because it more-or-less always happens. Science proceeds despite this, not because of it.
(But jerf, my teacher... Yes, you had a wonderful teacher who didn't only give you an A for the equivalent but called you out in class for your honesty and I dunno, flunked everyone who claimed they got the supposed "correct" answer to three significant digits because that was impossible. There are a few shining lights in the field and I would never dream of denying that. Now tell me how that idealism worked for you going forward the next several years.)