←back to thread

462 points jakevoytko | 2 comments | | HN request time: 0.418s | source
Show context
nneonneo ◴[] No.43490396[source]
FWIW: this type of bug in Chrome is exploitable to create out-of-bounds array accesses in JIT-compiled JavaScript code.

The JIT compiler contains passes that will eliminate unnecessary bounds checks. For example, if you write “var x = Math.abs(y); if(x >= 0) arr[x] = 0xdeadbeef;”, the JIT compiler will probably delete the if statement and the internal nonnegative array index check inside the [] operator, as it can assume that x is nonnegative.

However, if Math.abs is then “optimized” such that it can produce a negative number, then the lack of bounds checks means that the code will immediately access a negative array index - which can be abused to rewrite the array’s length and enable further shenanigans.

Further reading about a Chrome CVE pretty much exactly in this mold: https://shxdow.me/cve-2020-9802/

replies(1): >>43490703 #
saghm ◴[] No.43490703[source]
> which can be abused to rewrite the array’s length and enable further shenanigans.

I followed all of this up until here. JavaScript lets you modify the length of an array by assigning to indexes that are negative? I'm familiar with the paradigm of negative indexing being used to access things from the end of the array (like -1 being the last element), but I don't understand what operation someone could do that would somehow modify the length of the array rather than modifying a specific element in-place. Does JIT-compiled JavaScript not follow the usual JavaScript semantics that would normally happen when using a negative index, or are you describing something that would be used in combination with some other compiler bug (which honestly sounds a lot more severe even in the absence of an usual Math.abs implementation).

replies(4): >>43490725 #>>43490768 #>>43490992 #>>43491275 #
1. nneonneo ◴[] No.43490992[source]
Normally, there would be a bounds check to ensure that the index was actually non-negative; negative indices get treated as property accesses instead of array accesses (unlike e.g. Python where they would wrap around).

However, if the JIT compiler has "proven" that the index is never non-negative (because it came from Math.abs), it may omit such checks. In that case, the resulting access to e.g. arr[-1] may directly access the memory that sits one position before the array elements - which could, for example, be part of the array metadata, such as the length of the array.

You can read the comments on the sample CVE's proof-of-concept to see what the JS engine "thinks" is happening, vs. what actually happens when the code is executed: https://github.com/shxdow/exploits/blob/master/CVE-2020-9802.... This exploit is a bit more complicated than my description, but uses a similar core idea.

replies(1): >>43498805 #
2. saghm ◴[] No.43498805[source]
I understand the idea of the lack of a bounds check allowing access to early memory with a negative index, but I'm mostly struggling with wrapping my head around why the underlying memory layout is accessible in JavaScript in the first place. I hadn't considered the fact that the same syntax could be used for accessing arbitrary properties rather than just array indexes; that might be the nuance I was missing.