In exchange, he offers the idea that we should have something that is an 'energy minimization' architecture; as I understand it, this would have a concept of the 'energy' of an entire response, and training would try and minimize that.
Which is to say, I don't fully understand this. That said, I'm curious to hear what ML researchers think about Lecun's take, and if there's any engineering done around it. I can't find much after the release of ijepa from his group.
You must always keep close to the only known example we have of an intelligence which is the human brain. As soon as you start to wander away from the way the human brain does it, you are on your own and you are not relying on known examples of intelligence. Certainly that might be possible, but since there's only one known example in this universe of intelligence, it seems ridiculous to do anything but stick close to that example, which is the human brain.