←back to thread

385 points vessenes | 1 comments | | HN request time: 0s | source

So, Lecun has been quite public saying that he believes LLMs will never fix hallucinations because, essentially, the token choice method at each step leads to runaway errors -- these can't be damped mathematically.

In exchange, he offers the idea that we should have something that is an 'energy minimization' architecture; as I understand it, this would have a concept of the 'energy' of an entire response, and training would try and minimize that.

Which is to say, I don't fully understand this. That said, I'm curious to hear what ML researchers think about Lecun's take, and if there's any engineering done around it. I can't find much after the release of ijepa from his group.

Show context
bravura ◴[] No.43368085[source]
Okay I think I qualify. I'll bite.

LeCun's argument is this:

1) You can't learn an accurate world model just from text.

2) Multimodal learning (vision, language, etc) and interaction with the environment is crucial for true learning.

He and people like Hinton and Bengio have been saying for a while that there are tasks that mice can understand that an AI can't. And that even have mouse-level intelligence will be a breakthrough, but we cannot achieve that through language learning alone.

A simple example from "How Large Are Lions? Inducing Distributions over Quantitative Attributes" (https://arxiv.org/abs/1906.01327) is this: Learning the size of objects using pure text analysis requires significant gymnastics, while vision demonstrates physical size more easily. To determine the size of a lion you'll need to read thousands of sentences about lions, or you could look at two or three pictures.

LeCun isn't saying that LLMs aren't useful. He's just concerned with bigger problems, like AGI, which he believes cannot be solved purely through linguistic analysis.

The energy minimization architecture is more about joint multimodal learning.

(Energy minimization is a very old idea. LeCun has been on about it for a while and it's less controversial these days. Back when everyone tried to have a probabilistic interpretation of neural models, it was expensive to compute the normalization term / partition function. Energy minimization basically said: Set up a sensible loss and minimize it.)

replies(16): >>43368212 #>>43368251 #>>43368801 #>>43368817 #>>43369778 #>>43369887 #>>43370108 #>>43370284 #>>43371230 #>>43371304 #>>43371381 #>>43372224 #>>43372695 #>>43372927 #>>43373240 #>>43379739 #
cm2012 ◴[] No.43368212[source]
This seems strongly backed up by Claude Plays Pokemon
replies(1): >>43368359 #
fewhil ◴[] No.43368359[source]
Isn't Claude Plays Pokemon using image input in addition to text? Not that it's perfect at it (some of its most glaring mistakes are when it just doesn't seem to understand what's on the screen correctly).
replies(1): >>43368680 #
cm2012 ◴[] No.43368680[source]
Yes but because it's trained on text and in the backend, images are converted to tokens, it is absolutely dogshit at navigation and basic puzzles. It can't figure out what Squirrels can about how to achieve goals in a maze.
replies(1): >>43369350 #
1. mountainriver ◴[] No.43369350[source]
The images are converted to an embedding space the size of token embedding space. And the model is trained on that new embedding space. A joint representation of text and images is formed.

It’s not as though the image is converted to text tokens.