I argue that JEPA and its Energy-Based Model (EBM) framework fail to capture the deeply intertwined nature of learning and prediction in the human brain—the “yin and yang” of intelligence. Contemporary machine learning approaches remain heavily reliant on resource-intensive, front-loaded training phases. I advocate for a paradigm shift toward seamlessly integrating training and prediction, aligning with the principles of online learning.
Disclosure: I am the author of this paper.
Reference: (PDF) Hydra: Enhancing Machine Learning with a Multi-head Predictions Architecture. Available from: https://www.researchgate.net/publication/381009719_Hydra_Enh... [accessed Mar 14, 2025].
replies(3):