←back to thread

385 points vessenes | 2 comments | | HN request time: 0s | source

So, Lecun has been quite public saying that he believes LLMs will never fix hallucinations because, essentially, the token choice method at each step leads to runaway errors -- these can't be damped mathematically.

In exchange, he offers the idea that we should have something that is an 'energy minimization' architecture; as I understand it, this would have a concept of the 'energy' of an entire response, and training would try and minimize that.

Which is to say, I don't fully understand this. That said, I'm curious to hear what ML researchers think about Lecun's take, and if there's any engineering done around it. I can't find much after the release of ijepa from his group.

Show context
ActorNightly ◴[] No.43325670[source]
Not an official ML researcher, but I do happen to understand this stuff.

The problem with LLMs is that the output is inherently stochastic - i.e there isn't a "I don't have enough information" option. This is due to the fact that LLMs are basically just giant look up maps with interpolation.

Energy minimization is more of an abstract approach to where you can use architectures that don't rely on things like differentiability. True AI won't be solely feedforward architectures like current LLMs. To give an answer, they will basically determine alogrithm on the fly that includes computation and search. To learn that algorithm (or algorithm parameters), at training time, you need something that doesn't rely on continuous values, but still converges to the right answer. So instead you assign a fitness score, like memory use or compute cycles, and differentiate based on that. This is basically how search works with genetic algorithms or PSO.

replies(10): >>43365410 #>>43366234 #>>43366675 #>>43366830 #>>43366868 #>>43366901 #>>43366902 #>>43366953 #>>43368585 #>>43368625 #
1. unsupp0rted ◴[] No.43366901[source]
> The problem with LLMs is that the output is inherently stochastic

Isn't that true with humans too?

There's some leap humans make, even as stochastic parrots, that lets us generate new knowledge.

replies(1): >>43374566 #
2. borgdefenser ◴[] No.43374566[source]
I think it is because we don't feel the random and chaotic nature of what we know as individuals.

If I had been born a day earlier or later I would have a completely different life because of initial conditions and randomness but life doesn't feel that way even though I think this is obviously true.