←back to thread

749 points noddybear | 1 comments | | HN request time: 0.261s | source

I'm Jack, and I'm excited to share a project that has channeled my Factorio addiction recently: the Factorio Learning Environment (FLE).

FLE is an open-source framework for developing and evaluating LLM agents in Factorio. It provides a controlled environment where AI models can attempt complex automation, resource management, and optimisation tasks in a grounded world with meaningful constraints.

A critical advantage of Factorio as a benchmark is its unbounded nature. Unlike many evals that are quickly saturated by newer models, Factorio's geometric complexity scaling means it won't be "solved" in the next 6 months (or possibly even years). This allows us to meaningfully compare models by the order-of-magnitude of resources they can produce - creating a benchmark with longevity.

The project began 18 months ago after years of playing Factorio, recognising its potential as an AI research testbed. A few months ago, our team (myself, Akbir, and Mart) came together to create a benchmark that tests agent capabilities in spatial reasoning and long-term planning.

Two technical innovations drove this project forward: First, we discovered that piping Lua into the Factorio console over TCP enables running (almost) arbitrary code without directly modding the game. Second, we developed a first-class Python API that wraps these Lua programs to provide a clean, type-hinted interface for AI agents to interact with Factorio through familiar programming paradigms.

Agents interact with FLE through a REPL pattern: 1. They observe the world (seeing the output of their last action) 2. Generate Python code to perform their next action 3. Receive detailed feedback (including exceptions and stdout)

We provide two main evaluation settings: - Lab-play: 24 structured tasks with fixed resources - Open-play: An unbounded task of building the largest possible factory on a procedurally generated map

We found that while LLMs show promising short-horizon skills, they struggle with spatial reasoning in constrained environments. They can discover basic automation strategies (like electric-powered drilling) but fail to achieve more complex automation (like electronic circuit manufacturing). Claude Sonnet 3.5 is currently the best model (by a significant margin).

The code is available at https://github.com/JackHopkins/factorio-learning-environment.

You'll need: - Factorio (version 1.1.110) - Docker - Python 3.10+

The README contains detailed installation instructions and examples of how to run evaluations with different LLM agents.

We would love to hear your thoughts and see what others can do with this framework!

Show context
p10jkle ◴[] No.43331679[source]
Wow, fascinating. I wonder if in a few years every in-game opponent will just be an LLM with access to a game-controlling API like the one you've created.

Did you find there are particular types of tasks that the models struggle with? Or does difficulty mostly just scale with the number of items they need to place?

replies(4): >>43331727 #>>43331794 #>>43332192 #>>43339521 #
noddybear ◴[] No.43331727[source]
Hey - yes, I think this is definitely possible, as you don't need any training compute for it to work. Its super easy to plug-and-play different models into new games, once an API is made available.

Models struggle in 2 main areas. The first is spatial reasoning: often the models make off-by-one errors which they find it hard to recover from (as factories are very sensitive to these mistakes - like in programming). The second is in long-term planning, i.e figuring out what to do strategically, before making tactical subgoals.

The difficulty scales in lab-play generally in proportion to the depth of the production chains. If an item requires several factory segments first, this makes it a lot more challenging. I think this is related to planning though, as the models tend to get down 'into the weeds' of fixing minor issues - rather than coming up with a master plan first.

replies(1): >>43331824 #
pyinstallwoes ◴[] No.43331824[source]
Have you tried specific prompting like writing a mermaid diagram that forces the model to contextual use long term horizon tasks ?
replies(1): >>43332075 #
1. noddybear ◴[] No.43332075[source]
Yes we tried that - as well as a few other visual DSLs for spatial reasoning. They didn't seem to help much, i.e there were no failure modes that this approach solved compared to the simpler approach. As ARC-AGI results showed - there don't seem to be many 'free lunch' solutions to this without actually training.