←back to thread

433 points calcsam | 1 comments | | HN request time: 0s | source

Hi HN, we’re Sam, Shane, and Abhi, and we’re building Mastra (https://mastra.ai), an open-source JavaScript SDK for building agents on top of Vercel’s AI SDK.

You can start a Mastra project with `npm create mastra` and create workflow graphs that can suspend/resume, build a RAG pipeline and write evals, give agents memory, create multi-agent workflows, and view it all in a local playground.

Previously, we built Gatsby, the open-source React web framework. Later, we worked on an AI-powered CRM but it felt like we were having to roll all the AI bits (agentic workflows, evals, RAG) ourselves. We also noticed our friends building AI applications suffering from long iteration cycles: they were getting stuck debugging prompts, figuring out why their agents called (or didn’t call) tools, and writing lots of custom memory retrieval logic.

At some point we just looked at each other and were like, why aren't we trying to make this part easier, and decided to work on Mastra.

Demo video: https://www.youtube.com/watch?v=8o_Ejbcw5s8

One thing we heard from folks is that seeing input/output of every step, of every run of every workflow, is very useful. So we took XState and built a workflow graph primitive on top with OTel tracing. We wrote the APIs to make control flow explicit: `.step()` for branching, `.then()` for chaining, and `.after()` for merging. We also added .`.suspend()/.resume()` for human-in-the-loop.

We abstracted the main RAG verbs like `.chunk()`, `embed()`, `.upsert(),’ `.query()`, and `rerank()` across document types and vector DBs. We shipped an eval runner with evals like completeness and relevance, plus the ability to write your own.

Then we read the MemGPT paper and implemented agent memory on top of AI SDK with a `lastMessages` key, `topK` retrieval, and a `messageRange` for surrounding context (think `grep -C`).

But we still weren’t sure whether our agents were behaving as expected, so we built a local dev playground that lets you curl agents/workflows, chat with agents, view evals and traces across runs, and iterate on prompts with an assistant. The playground uses a local storage layer powered by libsql (thanks Turso team!) and runs on localhost with `npm run dev` (no Docker).

Mastra agents originally ran inside a Next.js app. But we noticed that AI teams’ development was increasingly decoupled from the rest of their organization, so we built Mastra so that you can also run it as a standalone endpoint or service.

Some things people have been building so far: one user automates support for an iOS app he owns with tens of thousands of paying users. Another bundled Mastra inside an Electron app that ingests aerospace PDFs and outputs CAD diagrams. Another is building WhatsApp bots that let you chat with objects like your house.

We did (for now) adopt an Elastic v2 license. The agent space is pretty new, and we wanted to let users do whatever they want with Mastra but prevent, eg, AWS from grabbing it.

If you want to get started: - On npm: npm create mastra@latest - Github repo: https://github.com/mastra-ai/mastra - Demo video: https://www.youtube.com/watch?v=8o_Ejbcw5s8 - Our website homepage: https://mastra.ai (includes some nice diagrams and code samples on agents, RAG, and links to examples) - And our docs: https://mastra.ai/docs

Excited to share Mastra with everyone here – let us know what you think!

Show context
_pdp_ ◴[] No.43108437[source]
I don't want to be that person but there are hundreds of other similar frameworks doing more or less the same thing. Do you know why? Because writing a framework that orchestrates a number of tools with a model is the easy part. In fact, most of the time you don't even need a framework. All of these framework focus on the trivial and you can tell that simply by browsing the examples section.

This is like 5% of the work. The developer needs to fill the other 95% which involves a lot more things that are strictly outside of scope of the framework.

replies(5): >>43108655 #>>43108707 #>>43108733 #>>43108927 #>>43110904 #
cpursley ◴[] No.43108655[source]
I agree, and it feels like JS is just the wrong runtime for agents. Really languages that can model state in sane ways and have a good concurrency story like Elixir make much more sense.

And here’s a fun exercise: ask Claude via Cursor or Perplexity with R1 to create a basic agentic framework for you in your language of choice on top of Instructor.

replies(2): >>43109478 #>>43110484 #
CharlieDigital ◴[] No.43109478[source]

    > Really languages that can model state in sane ways and have a good concurrency story like Elixir make much more sense.
Can you expand on this? Curious why JS state modelling falls short here and what's wrong with the concurrency model in JS for agents.
replies(1): >>43110216 #
dartos ◴[] No.43110216[source]
For one, NodeJS doesn’t have concurrency. It’s a single threaded event loop.
replies(1): >>43110441 #
CharlieDigital ◴[] No.43110441[source]
It has concurrency with Promise; it doesn't have parallelism.
replies(2): >>43111543 #>>43111611 #
1. holoduke ◴[] No.43111611[source]
No real concurrency. No scheduling. If you are not working with a lot of IO then js would be a poor choice. But in this case we talk about network calls, so definitely IO. The settimout, promise, request methods will do their job.