←back to thread

433 points calcsam | 3 comments | | HN request time: 0s | source

Hi HN, we’re Sam, Shane, and Abhi, and we’re building Mastra (https://mastra.ai), an open-source JavaScript SDK for building agents on top of Vercel’s AI SDK.

You can start a Mastra project with `npm create mastra` and create workflow graphs that can suspend/resume, build a RAG pipeline and write evals, give agents memory, create multi-agent workflows, and view it all in a local playground.

Previously, we built Gatsby, the open-source React web framework. Later, we worked on an AI-powered CRM but it felt like we were having to roll all the AI bits (agentic workflows, evals, RAG) ourselves. We also noticed our friends building AI applications suffering from long iteration cycles: they were getting stuck debugging prompts, figuring out why their agents called (or didn’t call) tools, and writing lots of custom memory retrieval logic.

At some point we just looked at each other and were like, why aren't we trying to make this part easier, and decided to work on Mastra.

Demo video: https://www.youtube.com/watch?v=8o_Ejbcw5s8

One thing we heard from folks is that seeing input/output of every step, of every run of every workflow, is very useful. So we took XState and built a workflow graph primitive on top with OTel tracing. We wrote the APIs to make control flow explicit: `.step()` for branching, `.then()` for chaining, and `.after()` for merging. We also added .`.suspend()/.resume()` for human-in-the-loop.

We abstracted the main RAG verbs like `.chunk()`, `embed()`, `.upsert(),’ `.query()`, and `rerank()` across document types and vector DBs. We shipped an eval runner with evals like completeness and relevance, plus the ability to write your own.

Then we read the MemGPT paper and implemented agent memory on top of AI SDK with a `lastMessages` key, `topK` retrieval, and a `messageRange` for surrounding context (think `grep -C`).

But we still weren’t sure whether our agents were behaving as expected, so we built a local dev playground that lets you curl agents/workflows, chat with agents, view evals and traces across runs, and iterate on prompts with an assistant. The playground uses a local storage layer powered by libsql (thanks Turso team!) and runs on localhost with `npm run dev` (no Docker).

Mastra agents originally ran inside a Next.js app. But we noticed that AI teams’ development was increasingly decoupled from the rest of their organization, so we built Mastra so that you can also run it as a standalone endpoint or service.

Some things people have been building so far: one user automates support for an iOS app he owns with tens of thousands of paying users. Another bundled Mastra inside an Electron app that ingests aerospace PDFs and outputs CAD diagrams. Another is building WhatsApp bots that let you chat with objects like your house.

We did (for now) adopt an Elastic v2 license. The agent space is pretty new, and we wanted to let users do whatever they want with Mastra but prevent, eg, AWS from grabbing it.

If you want to get started: - On npm: npm create mastra@latest - Github repo: https://github.com/mastra-ai/mastra - Demo video: https://www.youtube.com/watch?v=8o_Ejbcw5s8 - Our website homepage: https://mastra.ai (includes some nice diagrams and code samples on agents, RAG, and links to examples) - And our docs: https://mastra.ai/docs

Excited to share Mastra with everyone here – let us know what you think!

Show context
brap ◴[] No.43106216[source]
I don’t really understand agents. I just don’t get why we need to pretend we have multiple personalities, especially when they’re all using the same model.

Can anyone please give me a usecase, that couldn’t be solved with a single API call to a modern LLM (capable of multi-step planning/reasoning) and a proper prompt?

Or is this really just about building the prompt, and giving the LLM closer guidance by splitting into multiple calls?

I’m specifically not asking about function calling.

replies(9): >>43106401 #>>43106499 #>>43106505 #>>43106535 #>>43106552 #>>43106679 #>>43106770 #>>43107749 #>>43111518 #
1. 2pointsomone ◴[] No.43106401[source]
I don't work in prompt engineering but my partner does and she tells me numerous need for agents in cases where you want some technology which goes and seeks things on the live web and then comes back and you want to make sense of that found data with the LLM and pre-written prompts where you use that data as variables, and then possibly go back into the web if the task remains unsolved.
replies(1): >>43106452 #
2. dimgl ◴[] No.43106452[source]
Can't that be solved with regular workflow tools and prompts? Is that what an agent is, essentially?

Or is an agent a collection of prompts with a limited set of available tools?

replies(1): >>43117996 #
3. 2pointsomone ◴[] No.43117996[source]
I think the agent part is deciding how to navigate the web on its own and when it is convinced (and you haven't told it specifically deterministically) it found what it wanted, to come back and work with your prompts. You can't really logic code this into a workflow.