←back to thread

161 points isaacfrond | 2 comments | | HN request time: 0s | source
Show context
danwills ◴[] No.42724002[source]
I'd really love to know what the mathematicians are actually doing when they work this stuff out? Is it all on computers now? Can they somehow visualize 24-dimensional-sphere-packings in their minds? Are they maybe rigorously checking results of a 'test function' that tells them they found a correct/optimal packing? I would love to know more about what the day-to-day work involved in this type of research actually would be!
replies(6): >>42724128 #>>42724129 #>>42724210 #>>42724238 #>>42724766 #>>42732516 #
iNic ◴[] No.42724766[source]
The kind of intuition you gain for higher dimension tends not to be visual. It is more that you learn a bunch of tools and these in turn build intuition. For example high dimensional spheres are "pointy" and most of their volume are near their surface. These ideas can be defined rigorously and are important and useful. For medium dimension there are usually specific facts that you exploit. In my own work stuff like "How often do you expect random walks to intersect" is very important (and dependent on dimension).
replies(2): >>42725261 #>>42729341 #
david-gpu ◴[] No.42725261[source]
> For example high dimensional spheres are "pointy" and most of their volume are near their surface

I had a visceral reaction to this. In what sense can a sphere be considered pointy? Almost by definition, it is the volume that minimizes surface area, in any number of dimensions.

I can see how in higher dimensions e.g. a hypersphere has much lower volume than a hypercube. But that's not because the hypersphere became pointy, it's because the corners of the hypercube are increasingly more voluminous relative to the volume of the hypersphere, right?

replies(3): >>42725546 #>>42727180 #>>42727564 #
iNic ◴[] No.42727180[source]
There is a standard thought experiment where you start with a hypercube of side-length 2, centered at the origin. You then place a radius 1 sphere on each vertex of this hypercube. The question then becomes: what is the largest sphere you can place at the origin so that it is "contained" by the other spheres. As it turns out in like dimension 6 or so the radius of the center sphere exceeds 1. It will actually poke out arbitrarily far (while still being restricted by the corner spheres).
replies(2): >>42730522 #>>42730526 #
1. Sharlin ◴[] No.42730522[source]
Yes, but that can be better understood as the hypercube becoming more pointy, not the sphere. And it's true; the cube's vertices get arbitrarily far from the origin, while the centers of its faces stay at ±1.

There are other ways in which a hypersphere can be considered "pointy", though; for example, consider a point lying on the surface being moved some epsilon distance to a random direction. As the dimension increases, the probability that the point ends up inside the sphere approaches zero – the sphere spans a smaller and smaller fraction of the "sky".

replies(1): >>42730647 #
2. senderista ◴[] No.42730647[source]
Specifically, of course, d = sqrt(N), where N is dimension and d is distance of a vertex of the unit hypercube from the origin.