I had a visceral reaction to this. In what sense can a sphere be considered pointy? Almost by definition, it is the volume that minimizes surface area, in any number of dimensions.
I can see how in higher dimensions e.g. a hypersphere has much lower volume than a hypercube. But that's not because the hypersphere became pointy, it's because the corners of the hypercube are increasingly more voluminous relative to the volume of the hypersphere, right?
There are other ways in which a hypersphere can be considered "pointy", though; for example, consider a point lying on the surface being moved some epsilon distance to a random direction. As the dimension increases, the probability that the point ends up inside the sphere approaches zero – the sphere spans a smaller and smaller fraction of the "sky".