Where does that energy come from? 1st law of thermodynamics?
Professor Aldo Rossa started popularizing a lot of this in the 80s. https://patents.google.com/patent/US4107277A/en
Having something other than a fossil fuel source for the most common fertilizer in the world seems useful. Also, it's easier, cheaper and safer to ship ammonia around than Hydrogen since it's a low pressure liquid and more energy dense. People have been talking about using it as a shipping fuel for decades.
One aspect of these miracle solutions to watch out for: the catalyst is often very expensive and has a finite lifespan.
Edit: actual paper https://www.science.org/doi/full/10.1126/sciadv.ads4443
Edit: got to the bit in the paper where they describe the process; "contact electrification". This appears to be an electrostatic phenomenon like tribocharging (the old "rub a balloon on your hair" trick). Water droplets hitting the catalyst generates enough potential at the surface to trigger a reaction. So I suppose the energy input is actually in the spray+pump of the experiment, or wind in the outdoor example.
The resulting output is extremely dilute. Raising the concentration is likely to consume more energy for generating an actually useful output.
> resulting in ammonia concentrations ranging from 25 to 120 μM in 1 hour
Not usable as fuel. You'd need to separate the ammonium from the water using a energy intensive process (cooking or such).
They have not given any numbers about the energy consumed by the pump, but at least in this experimental devices it is likely that the amount of ammonia that is produced is very small for the energy consumed by the pump, in comparison with other synthesis methods.
For now, the ammonia is produced as a solution in water with very low ammonia concentration. Perhaps this could be usable directly as a fertilizer for plants. For any other uses, concentrating the ammonia produced in this way would require a large amount of additional energy.
In the form presented now, this method of ammonia synthesis would be too inefficient, but the authors hope that the efficiency can be improved some orders of magnitude.
Worse, they seem to be using some chilled object to condense ammonia solution from the air, so you’re also paying the energy cost of keeping it cold, which means you’re paying the full cost of producing a lot of water from atmospheric water vapor. Maybe a future improvement could start with liquid water.