In higher dimensions, are the spheres just a visual metaphor based on the 3-dimensional problem, or are mathematicians really visualising spheres with physical space between them?
Is that even a valid question, or does it just betray my inability to perceive higher dimensions?
This is fascinating and I'm in awe of the people that do this work.
It's not really a metaphor.
An n-sphere is the set of all points that are the same distance away from the same centre, in (n+1)-dimensional space. That generalises perfectly well to any number of dimensions.
In 1 dimension you get 2 points (0-sphere), in 2 dimensions you get a circle (1-sphere), in 3 dimensions you get a sphere (2-sphere), etc.
EDIT: Also, if you slice a plane through a sphere, you get a circle. If you slice a line through a circle, you get 2 points. If you slice a 3d space through a hypersphere in 4d space, do you get a normal sphere? Probably.
Yep — and this will generally be the case, as the equation looks like: x1^2 + x2^2 + … + xn^2 = r^2. If you fix one dimension, you have a hyperplane perpendicular to that axis — and a sphere of one dimension lower in that hyperplane.
For four dimensions, you can sort of visualize that as x^2 + y^2 + z^2 + t^2 = r^2, where xyz are your normal 3D and t is time. From t=-r to t=r, you have it start as a point then spheres of growing size until you hit t=0, then the spheres shrink back to a point.