←back to thread

161 points isaacfrond | 1 comments | | HN request time: 0.996s | source
Show context
matsemann ◴[] No.42724308[source]
> In two dimensions, the answer is clearly six: Put a penny on a table, and you’ll find that when you arrange another six pennies around it, they fit snugly into a daisylike pattern.

Is there an intuitive reason for why 6 fits so perfectly? Like, it could be a small gap somewhere, like in 3d when it's 12, but it isn't. Something to do with tessellation and hexagons, perhaps?

> They look for ways to arrange spheres as symmetrically as possible. But there’s still a possibility that the best arrangements might look a lot weirder.

Like square packing for 11 looks just crazy (not same problem, but similar): https://en.wikipedia.org/wiki/Square_packing

replies(2): >>42724357 #>>42724387 #
1. jansan ◴[] No.42724357[source]
It would be fun to make that square packing for 11 from wood and give it to puzzle enthusiasts with this task: Rearrange the squares so you can add an additional 12th square. And then watch them struggle putting even those 11 squares back in.