←back to thread

Building Effective "Agents"

(www.anthropic.com)
597 points jascha_eng | 1 comments | | HN request time: 0.212s | source
1. thoughtlede ◴[] No.42476104[source]
When thinking about AI agents, there is still conflation between how to decide the next step to take vs what information is needed to decide the next step.

If runtime information is insufficient, we can use AI/ML models to fill that information. But deciding the next step could be done ahead of time assuming complete information.

Most AI agent examples short circuit these two steps. When faced with unstructured or insufficient information, the program asks the LLM/AI model to decide the next step. Instead, we could ask the LLM/AI model to structure/predict necessary information and use pre-defined rules to drive the process.

This approach will translate most [1] "Agent" examples into "Workflow" examples. The quotes here are meant to imply Anthropic's definition of these terms.

[1] I said "most" because there might be continuous world systems (such as real world simulacrum) that will require a very large number of rules and is probably impractical to define each of them. I believe those systems are an exception, not a rule.