←back to thread

119 points cratermoon | 4 comments | | HN request time: 0.921s | source
Show context
mapt ◴[] No.42198516[source]
The current trajectory is that SpaceX proved the commercial and military viability of an LEO megaconstellation, repeatedly lowering their target altitudes and raising their satellite count because of debris and cell size concerns...

And now the rest of the world is trying to catch up in a sort of arms race, and not taking any care about debris concerns. The most tempting orbits are the ones in upper LEO that permit them to launch fewer satellites.

SpaceX are going to end up well under 500km (orbital lifespan: a decade) before things are finished, and they switched to very low orbit staging with SEP spiral out to reach final orbit a ways back.

China's newest constellation Thousand Sails is at an altitude of 800km (orbital lifespan: thousands of years), with a thousand satellites in the works over the next year or so and 14,000 planned, and they're launching them using chemical upper stages designed to explode into a thousand pieces at the target altitude. This is sufficient for Kessler Syndrome all on its own, without counting interactions with anything else up there. A catastropic debris cascade at 800km percolates down to lower altitudes over time and impacts.

We need viable treaties limiting development beyond 400 or 500km and we need them ten years ago.

I don't know how to sell the urgency of this predicament. You can have as many satellites as you want, a million uncoordinated bodies, at 400km because direct collision potential scales with (satellite count / orbital lifespan) ^2 . At 1000km, satellites decay so slowly we are already too crowded; we have already overused the space. We are speed-running the end of the space age and we are doing it to save a small number of dollars and to avoid a small amount of diplomacy.

This is not something we get a do-over on. There is no practical way to collect ton-scale debris at present, no way to track kilogram-scale debris, no practical way to shield pressure vessels against gram-scale debris, and even milligram-scale debris can hit with the force of a bullet. After collisions start occurring at a rapid clip, the mass of potential impactors quickly forms a long tailed lognormal distribution that denies us space for centuries.

replies(12): >>42198566 #>>42198775 #>>42198922 #>>42199151 #>>42199177 #>>42199520 #>>42201406 #>>42201836 #>>42201926 #>>42201995 #>>42203453 #>>42203465 #
leptons ◴[] No.42198922[source]
>I don't know how to sell the urgency of this predicament. You can have as many satellites as you want, a million uncoordinated bodies, at 400km because direct collision potential scales with (satellite count / orbital lifespan) ^2 . At 1000km, satellites decay so slowly we are already too crowded; we have already overused the space. We are speed-running the end of the space age and we are doing it to save a small number of dollars and to avoid a small amount of diplomacy.

This sounds like the most first-world-problem ever. It realistically affects practically nobody alive, nor would it ever. Most people will live and die on the planet's surface and never visit space, nor do they need to. There aren't too many space-based services that are really necessary to life on earth. Nobody really needs internet in the middle of nowhere. Sure, it's nice to have, but that's a first world problem that few people have.

replies(2): >>42198982 #>>42199578 #
nwiswell ◴[] No.42198982[source]
> It realistically affects practically nobody alive

Do people in the Global South not use GPS or consume weather forecasts?

replies(1): >>42199038 #
1. leptons ◴[] No.42199038[source]
Sure, GPS is nice to have, but we lived without it for many centuries before it, it's also a "first-world-problem" if it goes down. GPS is also notoriously susceptible to ground-based jamming. And because of that there's also other ways to track position. Weather forecasts are nice to have, but often wrong. My original comment was framed more towards space travel.
replies(2): >>42199362 #>>42201288 #
2. minetest2048 ◴[] No.42199362[source]
The thing is that GPS doesn't just do positioning. If we lost GPS then we can just look at road signs (hopefully). GPS also provides time synchronization to a lot of very important telecom infrastructure. To prevent 4G base stations and digital TV transmitters from interfering with each other, their transmit reference clock frequency need to be disciplined to within 50 ppb and their time need to be synchronized to less then 1 us.

No GPS means no 4G and no digital TV. And technology leapfrog effect means that third world countries will be significantly affected, as they jumped directly to mobile phone: https://www.cio.com/article/194000/what-does-technology-leap... . And countries are moving toward digital TV from analog TV: https://en.wikipedia.org/wiki/Digital_television_transition because they want to free up the spectrum for cellular network.

This is bad. The transmitter towers aren't moving anywhere soon, so the obvious solution is to move them to fiber timing network. Wired is always more reliable then wireless anyway, ask Linus Tech Tips. Only China understands this though: https://www.gpsworld.com/china-finishing-high-precision-grou... and https://cpl.iphy.ac.cn/article/10.1088/0256-307X/41/6/064202 . EU is moving toward that: https://www.gpsworld.com/europe-moving-toward-a-timing-backb... . US is hopeless

replies(1): >>42200356 #
3. codeforafrica ◴[] No.42200356[source]
And technology leapfrog effect means that third world countries will be significantly affected

Exactly that. In many parts of Africa the middle of nowhere is full of people. In many places mobile phones are the only way to get internet. I can't wait for starlink to be available here. Getting internet is not a first world problem.

4. wiml ◴[] No.42201288[source]
> Weather forecasts are nice to have, but often wrong.

I think you are really, really underestimating the importance of weather forecasting to modern agriculture (and therefore global stability), shipping and transport, logistics, energy infrastructure, and on and on.