←back to thread

168 points Tammilore | 1 comments | | HN request time: 0.215s | source

Documind is an open-source tool that turns documents into structured data using AI.

What it does:

- Extracts specific data from PDFs based on your custom schema - Returns clean, structured JSON that's ready to use - Works with just a PDF link + your schema definition

Just run npm install documind to get started.

Show context
emmanueloga_ ◴[] No.42173837[source]
From the source, Documind appears to:

1) Install tools like Ghostscript, GraphicsMagick, and LibreOffice with a JS script. 2) Convert document pages to Base64 PNGs and send them to OpenAI for data extraction. 3) Use Supabase for unclear reasons.

Some issues with this approach:

* OpenAI may retain and use your data for training, raising privacy concerns [1].

* Dependencies should be managed with Docker or package managers like Nix or Pixi, which are more robust. Example: a tool like Parsr [2] provides a Dockerized pdf-to-json solution, complete with OCR support and an HTTP api.

* GPT-4 vision seems like a costly, error-prone, and unreliable solution, not really suited for extracting data from sensitive docs like invoices, without review.

* Traditional methods (PDF parsers with OCR support) are cheaper, more reliable, and avoid retention risks for this particular use case. Although these tools do require some plumbing... probably LLMs can really help with that!

While there are plenty of tools for structured data extraction, I think there’s still room for a streamlined, all-in-one solution. This gap likely explains the abundance of closed-source commercial options tackling this very challenge.

---

1: https://platform.openai.com/docs/models#how-we-use-your-data

2: https://github.com/axa-group/Parsr

replies(5): >>42175186 #>>42176460 #>>42176836 #>>42178185 #>>42195512 #
1. sidmo ◴[] No.42195512[source]
If you are looking for the latest/greatest in file processing i'd recommend checking out vision language models. They generate embeddings of the images themselves (as a collection of patches) and you can see query matching displayed as a heatmap over the document. Picks up text that OCR misses. My company DataFog has an open-source demo if you want to try it out: https://github.com/DataFog/vlm-api

If you're looking for an all-in-one solution, little plug for our new platform that does the above and also allows you to create custom 'patterns' that get picked up via semantic search. Uses open-source models by default, can deploy into your internal network. www.datafog.ai. In beta now and onboarding manually. Shoot me an email if you'd like to learn more!