←back to thread

108 points cgeier | 2 comments | | HN request time: 0.45s | source
Show context
Ductapemaster ◴[] No.42186703[source]
In my upper-division analog electronics class (the hard one), our lab project throughout the quarter was to build an analog computer that simulated the physics of a bouncing ball. Physical variables of the system were adjustable (gravity constant, coefficient of restitution, etc), and the ball was "released" by pressing a button. The output was viewed on an oscilloscope.

One of the hardest 10 weeks of my life, but also one of the most rewarding. Our team was one of the few that actually got it working in the end. I had to custom-make a gigantic breadboard to hold the entire circuit.

Today I still work in hardware, but mostly with digital circuits. While my analog knowledge has decayed over the last decade, that project and it's success gives me great confidence any time I have to deal with the domain.

If you want to take a look, here's a pretty similar project: https://www.analogmuseum.org/english/examples/bouncing_ball_...

replies(4): >>42186864 #>>42188122 #>>42188230 #>>42189794 #
1. leeter ◴[] No.42188122[source]
> Today I still work in hardware, but mostly with digital circuits. While my analog knowledge has decayed over the last decade, that project and it's success gives me great confidence any time I have to deal with the domain.

Do you think about the analog qualities of your traces when laying things out? If so then the course was well taken.

In my observations I've found that too many digital engineers assume a differential pair will save them without actually fixing the impedance and parasitic issues. Particularly as the timings of things become so much more precise analog is so important. People forget that a digital circuit is just an analog one under the covers.

replies(1): >>42191397 #
2. throwup238 ◴[] No.42191397[source]
The way my teacher put it: “High speed digital electronics is just analog with a rise time.”