←back to thread

268 points aapoalas | 1 comments | | HN request time: 0.217s | source

We're building a different kind of JavaScript engine, based on data-oriented design and willingness to try something quite out of left field. This is most concretely visible in our major architectural choices:

1. All data allocated on the JavaScript heap is placed into a type-specific vector. Numbers go into the numbers vector, strings into the strings vector, and so on.

2. All heap references are type-discriminated indexes: A heap number is identified by its discriminant value and the index to which it points to in the numbers vector.

3. Objects are also split up into object kind -specific vectors. Ordinary objects go into one vector, Arrays go into another, DataViews into yet another, and so on.

4. Unordinary objects' heap data does not contain ordinary object data but instead they contain an optional index to the ordinary objects vector.

5. Objects are aggressively split into parts to avoid common use-cases having to reading parts that are known to be unused.

If this sounds interesting, I've written a few blog posts on the internals of Nova over in our blog, you can jump into that here: https://trynova.dev/blog/what-is-the-nova-javascript-engine

Show context
ridiculous_fish ◴[] No.42178995[source]
"Numbers go into the numbers vector" is unusual - typically JS engines use either NaN-boxing or inline small integers (e.g. v8 SMI). I suppose this means that a simple `this.count += 1` will always allocate.

Have you considered using NaN-boxing? Also, are the type-specific vectors compacted by the GC, or do they maintain a free list?

replies(1): >>42180001 #
1. aapoalas ◴[] No.42180001[source]
We do have all safe integers inline (and most doubles too).

I answered about NaN boxing somewhere here but basically, we get quite a bit of mileage from our tagged union / enum / ADT based Value, so I don't think I'd change to NaN boxing now even if I could.