←back to thread

195 points rbanffy | 3 comments | | HN request time: 0.721s | source
Show context
pie420 ◴[] No.42176400[source]
layperson with no industry knowledge, but it seems like nvidia's CUDA moat will fall in the next 2-5 years. It seems impossible to sustain those margins without competition coming in and getting a decent slice of the pie
replies(5): >>42176440 #>>42177575 #>>42177944 #>>42178259 #>>42179625 #
metadat ◴[] No.42176440[source]
But how will AMD or anyone else push in? CUDA is actually a whole virtualization layer on top of the hardware and isn't easily replicable, Nvidia has been at it for 17 years.

You are right, eventually something's gotta give. The path for this next leg isn't yet apparent to me.

P.s. how much is an exaflop or petaflop, and how significant is it? The numbers thrown around in this article don't mean anything to me. Is this new cluster way more powerful than the last top?

replies(14): >>42176567 #>>42176711 #>>42176809 #>>42177061 #>>42177287 #>>42177319 #>>42177378 #>>42177451 #>>42177452 #>>42177477 #>>42177479 #>>42178108 #>>42179870 #>>42180214 #
LeanderK ◴[] No.42177061[source]
its possible. Just look at Apples GPU, its mostly supported by torch, what's left are mostly edge-cases. Apple should make a datacenter GPU :D that would be insanely funny. It's actually somewhat well positioned as, due to the MacBooks, the support is already there. I assume here that most things translate to linux, as I don't think you can sell MacOS in the cloud :D

I know a lot developing on apples silicon and just pushing it to clusters for bigger runs. So why not run it on an apple GPU there?

replies(2): >>42177409 #>>42178483 #
1. talldayo ◴[] No.42177409[source]
> what's left are mostly edge-cases.

For everything that isn't machine learning, I frankly feel like it's the other way around. Apple's "solution" to these edge cases is telling people to write compute shaders that you could write in Vulkan or DirectX instead. What sets CUDA apart is an integration with a complex acceleration pipeline that Apple gave up trying to replicate years ago.

When cryptocurrency mining was king-for-a-day, everyone rushed out to buy Nvidia hardware because it supported accelerated crypto well from the start. The same thing happened with the AI and machine learning boom. Apple and AMD were both late to the party and wrongly assumed that NPU hardware would provide a comparable solution. Without a CUDA competitor, Apple would struggle more than AMD to find market fit.

replies(1): >>42177935 #
2. LeanderK ◴[] No.42177935[source]
well, but machine learning is the major reason we use GPUs in the datacenter (not talking about consumer GPUs here). The others are edge-cases for data-centre applications! Apple is uniquely positioned exactly because it is already solved due to a significant part of the ML-engineers using MacBooks to develop locally.

The code to run these things on apples GPUs exist and is used every day! I don't know anyone using AMD GPUs, but pretty often its nvidia on the cluster and Apple on the laptop. So if nvidia is making these juicy profits, i think apple could seriously think about moving to the cluster if it wants to.

replies(1): >>42179042 #
3. talldayo ◴[] No.42179042[source]
Software developers using Macbooks doesn't mean Apple solved the ML problem. The past 10 years of MacOS removing features has somewhat proved that software developers will keep using Macs even when the featureset regresses. Like how Apple used to support OpenCL as a CUDA alternative, but gave up on it altogether to focus on simpler, mobile-friendly GPU designs.

The Pytorch MPS patches are a fun appeasement for developers, but they didn't unthrone Nvidia's demand. They didn't beat Nvidia on performance per watt, they didn't match their price, their scale or CUDA's featureset, and they don't even provide basic server drivers. It's got nothing to do with what brand you prefer and everything to do with what makes actual sense in a datacenter. Apple can't take on Nvidia clusters without copying Nvidia's current architecture - Apple Silicon's current architecture is too inefficient to be a serious replacement to Nvidia clusters.

If Apple wanted to have a shot at entering the cluster game, that window of opportunity closed when Apple Silicon converged on simplified GPU designs. The 2w NPUs and compute shaders aren't going to make Nvidia scared, let alone compete with AMD's market share.