←back to thread

248 points rishicomplex | 1 comments | | HN request time: 0.2s | source
Show context
sega_sai ◴[] No.42167962[source]
I think the interface of LLM with formalized languages is really the future. Because here you can formally verify every statement and deal with hallucinations.
replies(9): >>42168164 #>>42168732 #>>42168855 #>>42169086 #>>42169255 #>>42169394 #>>42169686 #>>42171742 #>>42176215 #
nybsjytm ◴[] No.42169255[source]
If this were the case, I don't see why we'd need to wait for an AI company to make a breakthrough in math research. The key issue instead is how to encode 'real-life' statements in a formal language - which to me seems like a ludicrous problem, just complete magical thinking.

For example, how might an arbitrary statement like "Scholars believe that professional competence of a teacher is a prerequisite for improving the quality of the educational process in preschools" be put in a lean-like language? What about "The theoretical basis of the October Revolution lay in a development of Marxism, but this development occurred through three successive rounds of theoretical debate"?

Or have I totally misunderstood what people mean when they say that developments in automatic theorem proving will solve LLM's hallucination problem?

replies(5): >>42169803 #>>42170196 #>>42172147 #>>42172273 #>>42174396 #
1. ianhorn ◴[] No.42174396[source]
This is a thing I'm working on, so I have some potentially useful thoughts. tl;dr, it doesn't have to be about encoding arbitrary real life statements to be super duper useful today.

> how might an arbitrary statement like "Scholars believe that professional competence of a teacher is a prerequisite for improving the quality of the educational process in preschools" be put in a lean-like language?

Totally out of scope in the any near future for me at least. But that doesn't prevent it from being super useful for a narrower scope. For example:

- How might we take a statement like "(x + 1) (x - 5) = 0" and encode it formally?

- Or "(X X^T)^-1 X Y = B"?

- Or "6 Fe_2 + 3 H_2 O -> ?"?

We can't really do this for a huge swath of pretty narrow applied problems. In the first, what kind of thing is X? Is it an element of an algebraically closed field? In the second, are those matrices of real numbers? In the third, is that 6 times F times e_2 or 6 2-element iron molecules?

We can't formally interpret those as written, but you and I can easily tell what's meant. Meanwhile, current ways of formally writing those things up is a massive pain in the ass. Anything with a decent amount of common sense can tell you what is probably meant formally. We know that we can't have an algorithm that's right 100% of the time for a lot of relevant things, but 99.99% is pretty useful. If clippy says 'these look like matrices, right?' and is almost always right, then it's almost always saving you lots of time and letting lots more people benefit from formal methods with a much lower barrier to entry.

From there, it's easy to imagine coverage and accuracy of formalizable statements going up and up and up until so much is automated that it looks kinda like 'chatting about real-life statements' again. I doubt that's the path, but from a 'make existing useful formal methods super accessible' lens it doesn't have to be.