Not going to do that with reverse osmosis systems.
That said, with merely brackish input water, I'm wondering how many problems this really solves. Drinking water, sure, but you have to get rid of the concentrated brine at the end and it's still groundwater that can be overdrawn.
However, if v 2.0 can effectively desalinate ocean water, it would be huge for islands and coastal areas.
Late 19th and early 20th century attempts at self-loading firearms were often ridiculous in their concepts; huge component counts, lots of tiny mechanisms, strange attempts at extracting recoil and gas energy, everything under the sun. The mechanisms engineers were crafting in literal garage workshops are stunning in their variety and staggering in their watch-like complexity. Some were genuine works of art.
Then the M1 Garand, the SVT-40, and afterwards the AK (under the economic pressures of WW2) demonstrated how much room there was to simplify and give various components double duties. Now, most modern automatic weapons derive from those designs, and the improvements since have been in the materials engineering: Stronger, lighter, thinner, and generally reducing the amount of steel to the minimum necessary.
I imagine the paper has the actual parameters, so you can build upon their work.