LLM’s are not good at actually doing the processing, they are not good at math or even text processing at a character level. They often get logic wrong. But they are pretty good at looking at patterns and finding creative solutions to new inputs (or at least what can appear creative, even if philosophically it’s more pattern matching than creativity). So an LLM would potentially be good at writing a first draft of that script, which Dave could then proofread/edit, and which a standard deterministic computer could just run verbatim to actually do the processing. Eventually maybe even Dave’s proofreading would be superfluous.
Tying this back to the original article, I don’t think anyone is proposing having an LLM inside a chip that processes incoming data in a non-deterministic way. The article is about using AI to design the chips in the first place. But the chips would still be deterministic, the equivalent of the script in this analogy. There are plenty of arguments to make about LLM‘s not being good enough for that, not being able to follow the logic or optimize it, or come up with novel architectures. But the shape of chip design/Verilog feels like something that with enough effort, an AI could likely be built that would be pretty good at it. All of the knowledge that those smart knowledgeable engineers which are good at writing Verilog have built up can almost certainly be represented in some AI form, and I wouldn’t bet against AI getting to a point where it can be helpful similarly to how Copilot currently is with code completion. Maybe not perfect anytime soon, but good enough that we could eventually see a path to 100%. It doesn’t feel like there’s a fundamental reason this is impossible on a long enough time scale.
Or Dave could write a first draft of that script, saving him the time needed to translate what the LLM composed.