←back to thread

462 points pieterr | 1 comments | | HN request time: 0.205s | source
Show context
__turbobrew__ ◴[] No.42159121[source]
It’s interesting, SICP and other many other “classic” texts talk about designing programs, but these days I think the much more important skill is designing systems.

I don’t know if distributed systems is consider part of “Computer Science” but it is a much more common problem that I see needs to be solved.

I try to write systems in the simplest way possible and then use observability tools to figure out where the design is deficient and then maybe I will pull out a data structure or some other “computer sciency” thing to solve that problem. It turns out that big O notation and runtime complexity doesn’t matter the majority of the time and you can solve most problems with arrays and fast CPUs. And even when you have runtime problems you should profile the program to find the hot spots.

What computer science doesn’t teach you is how memory caching works in CPUs. Your fancy graph algorithm may have good runtime complexity but it completely hoses the CPU cache and you may have been able to go faster with an array with good cache usage.

The much more common problems I have is how to deal with fault tolerance, correctness in distributed locks and queues, and system scalability.

Maybe I am just biased because I have a computer/electrical engineering background.

replies(23): >>42159154 #>>42159177 #>>42159448 #>>42159469 #>>42159581 #>>42159600 #>>42160025 #>>42160394 #>>42160515 #>>42160581 #>>42160656 #>>42161150 #>>42161980 #>>42162797 #>>42163285 #>>42163324 #>>42163910 #>>42164082 #>>42164391 #>>42164509 #>>42164766 #>>42165157 #>>42169617 #
1. nh2 ◴[] No.42163910[source]
> big O notation and runtime complexity doesn’t matter the majority of the time and you can solve most problems with arrays

I have the exact opposite experience.

Software comes out best if you always ensure to use an approach with sensible runtime complexity, and only make trade-offs towards cache-friendly-worse-O implementations where you benchmarked thoroughly.

Most cases where I encounter mega slow programs are because somebody put in something quadratic instead of using a simple, standard O(n logn) solution.

Check out https://www.tumblr.com/accidentallyquadratic for many examples.